2024
Authors
Kurunathan, H; Li, K; Tovar, E; Jorge, AM; Ni, W; Jamalipour, A;
Publication
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Abstract
The exploitation of radio channels' inherent randomness for generating secret keys within a vehicular platoon offers a promising approach to securing communications in dynamic and unpredictable environments. The channel-based key generation leverages the fact that the physical characteristics of the radio channel, such as fading, shadowing, and multipath propagation, vary in a complex manner that makes it difficult for external adversaries to predict or replicate. A challenge lies in accurately assessing the channel's randomness to ensure the generated keys are both secure and consistent across the platooning vehicles, especially in vehicular environments with high mobility and the ever-changing urban landscape. This paper proposes a novel channel-based key generation (DRL-KeyAgree) technique to enhance communication security within vehicular platoons through combinatorial deep reinforcement learning (DRL). DRL-KeyAgree addresses key disagreement among platooning vehicles by training advantage Actor-Critic (A2C), which integrates policy-and value-based strategies to dynamically select optimal quantization intervals adapting to the random wireless channels. Further incorporation of Long Short-Term Memory (LSTM) allows DRL-KeyAgree to capture the characteristics of partially observable radio channels, significantly enhancing the key agreement rate among vehicles. DRL-KeyAgree is rigorously evaluated using the standard National Institute of Standards and Technology (NIST) test suite.
2024
Authors
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S; Litvak, M; Cordeiro, JP; Rocha, C; Sousa, HO; Mansouri, B;
Publication
SIGIR Forum
Abstract
2024
Authors
Piskorski, J; Stefanovitch, N; Alam, F; Campos, R; Dimitrov, D; Jorge, A; Pollak, S; Ribin, N; Fijavz, Z; Hasanain, M; Silvano, P; Sartori, E; Guimarães, N; Vitez, AZ; Pacheco, AF; Koychev, I; Yu, N; Nakov, P; San Martino, GD;
Publication
Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024), Grenoble, France, 9-12 September, 2024.
Abstract
We present an overview of CheckThat! Lab's 2024 Task 3, which focuses on detecting 23 persuasion techniques at the text-span level in online media. The task covers five languages, namely, Arabic, Bulgarian, English, Portuguese, and Slovene, and highly-debated topics in the media, e.g., the Isreali-Palestian conflict, the Russia-Ukraine war, climate change, COVID-19, abortion, etc. A total of 23 teams registered for the task, and two of them submitted system responses which were compared against a baseline and a task organizers' system, which used a state-of-the-art transformer-based architecture. We provide a description of the dataset and the overall task setup, including the evaluation methodology, and an overview of the participating systems. The datasets accompanied with the evaluation scripts are released to the research community, which we believe will foster research on persuasion technique detection and analysis of online media content in various fields and contexts. © 2024 Copyright for this paper by its authors.
2024
Authors
Silvano, P; Amorim, E; Leal, A; Cantante, I; Jorge, A; Campos, R; Yu, N;
Publication
Proceedings of Text2Story - Seventh Workshop on Narrative Extraction From Texts held in conjunction with the 46th European Conference on Information Retrieval (ECIR 2024), Glasgow, Scotland, UK, March 24, 2024.
Abstract
Temporal reasoning has been the focus of several studies during the past years, both in linguistics and computational studies. Although advances on this topic are undeniable, there are still improvements to be made and new avenues to pursue. One relevant problem concerns the temporal ordering of the events, particularly asserting and representing how events are temporally related and how the story told in the narrative evolves. This paper aims to analyse the temporal structure of narratives present in news articles with the aid of different visualisations. To this end, we annotated a dataset of 119 news articles in European Portuguese following an annotation scheme that combines different parts of ISO 24617-Language Resource Management - Semantic Annotation Framework (SemAF). The temporal layer of this annotation scheme identifies the events and their main features, as well as the temporal links between the events. The annotation provided us with paramount information about the temporal characteristics of news at two levels: the story and the report levels. The visualisations that we propose facilitate the process of understanding how news are temporally organised, providing a more practical means to observe them. © 2024 Copyright for this paper by its authors.
2024
Authors
Amorim, E; Campos, R; Jorge, AM; Mota, P; Almeida, R;
Publication
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy.
Abstract
Story components, namely, events, time, participants, and their relations are present in narrative texts from different domains such as journalism, medicine, finance, and law. The automatic extraction of narrative elements encompasses several NLP tasks such as Named Entity Recognition, Semantic Role Labeling, Event Extraction, and Temporal Inference. The text2story Python, an easy-to-use modular library, supports the narrative extraction and visualization pipeline. The package contains an array of narrative extraction tools that can be used separately or in sequence. With this toolkit, end users can process free text in English or Portuguese and obtain formal representations, like standard annotation files or a formal logical representation. The toolkit also enables narrative visualization as Message Sequence Charts (MSC), Knowledge Graphs, and Bubble Diagrams, making it useful to visualize and transform human-annotated narratives. The package combines the use of off-the-shelf and custom tools and is easily patched (replacing existing components) and extended (e.g. with new visualizations). It includes an experimental module for narrative element effectiveness assessment and being is therefore also a valuable asset for researchers developing solutions for narrative extraction. To evaluate the baseline components, we present some results of the main annotators embedded in our package for datasets in English and Portuguese. We also compare the results with the extraction of narrative elements by GPT-3, a robust LLM model.
2024
Authors
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S; Litvak, M;
Publication
Text2Story@ECIR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.