2024
Authors
Oliveira, F; da Silva, DQ; Filipe, V; Pinho, TM; Cunha, M; Cunha, JB; dos Santos, FN;
Publication
SENSORS
Abstract
Automating pruning tasks entails overcoming several challenges, encompassing not only robotic manipulation but also environment perception and detection. To achieve efficient pruning, robotic systems must accurately identify the correct cutting points. A possible method to define these points is to choose the cutting location based on the number of nodes present on the targeted cane. For this purpose, in grapevine pruning, it is required to correctly identify the nodes present on the primary canes of the grapevines. In this paper, a novel method of node detection in grapevines is proposed with four distinct state-of-the-art versions of the YOLO detection model: YOLOv7, YOLOv8, YOLOv9 and YOLOv10. These models were trained on a public dataset with images containing artificial backgrounds and afterwards validated on different cultivars of grapevines from two distinct Portuguese viticulture regions with cluttered backgrounds. This allowed us to evaluate the robustness of the algorithms on the detection of nodes in diverse environments, compare the performance of the YOLO models used, as well as create a publicly available dataset of grapevines obtained in Portuguese vineyards for node detection. Overall, all used models were capable of achieving correct node detection in images of grapevines from the three distinct datasets. Considering the trade-off between accuracy and inference speed, the YOLOv7 model demonstrated to be the most robust in detecting nodes in 2D images of grapevines, achieving F1-Score values between 70% and 86.5% with inference times of around 89 ms for an input size of 1280 x 1280 px. Considering these results, this work contributes with an efficient approach for real-time node detection for further implementation on an autonomous robotic pruning system.
2024
Authors
Pinheiro, I; Moreira, G; Magalhaes, S; Valente, A; Cunha, M; dos Santos, FN;
Publication
SCIENTIFIC REPORTS
Abstract
Pollination is critical for crop development, especially those essential for subsistence. This study addresses the pollination challenges faced by Actinidia, a dioecious plant characterized by female and male flowers on separate plants. Despite the high protein content of pollen, the absence of nectar in kiwifruit flowers poses difficulties in attracting pollinators. Consequently, there is a growing interest in using artificial intelligence and robotic solutions to enable pollination even in unfavourable conditions. These robotic solutions must be able to accurately detect flowers and discern their genders for precise pollination operations. Specifically, upon identifying female Actinidia flowers, the robotic system should approach the stigma to release pollen, while male Actinidia flowers should target the anthers to collect pollen. We identified two primary research gaps: (1) the lack of gender-based flower detection methods and (2) the underutilisation of contemporary deep learning models in this domain. To address these gaps, we evaluated the performance of four pretrained models (YOLOv8, YOLOv5, RT-DETR and DETR) in detecting and determining the gender of Actinidia flowers. We outlined a comprehensive methodology and developed a dataset of manually annotated flowers categorized into two classes based on gender. Our evaluation utilised k-fold cross-validation to rigorously test model performance across diverse subsets of the dataset, addressing the limitations of conventional data splitting methods. DETR provided the most balanced overall performance, achieving precision, recall, F1 score and mAP of 89%, 97%, 93% and 94%, respectively, highlighting its robustness in managing complex detection tasks under varying conditions. These findings underscore the potential of deep learning models for effective gender-specific detection of Actinidia flowers, paving the way for advanced robotic pollination systems.
2024
Authors
Krishna, MS; Machado, P; Otuka, RI; Yahaya, SW; Neves dos Santos, F; Ihianle, IK;
Publication
Abstract
2024
Authors
Reis-Pereira, M; Mazivila, SJ; Tavares, F; dos Santos, FN; Cunha, M;
Publication
SMART AGRICULTURAL TECHNOLOGY
Abstract
A novel non-destructive analytical method for early diagnosis of two bacterial diseases, Pseudomonas syringae and Xanthomonas euvesicatoria, in tomato plants, using ultraviolet-visible (UV-Vis) transmittance spectroscopy and chemometric models, is developed. Plant-pathogen interactions caused tissue damage that generated non-linear data patterns compared to the control set (healthy samples), which challenges traditional discrimination models, even when employing non-linear discriminant approaches. Alternatively, an authentication task to conduct oneclass classification relying on a data-driven version of soft independent modeling of class analogy (DD-SIMCA) is a wise choice due to its quadratic approach, proper to deal with non-linear data. DD-SIMCA detached the target class (control healthy plant leaflet tissues) from all other samples (target class and non-target class of plant leaflet tissues inoculated with two bacteria, even before the manifestation of macroscopic lesions associated with the diseases) by capturing the main similarities within the samples of the target class through the full distance that acts as a classification analytical signal, reaching 100 % sensitivity in the training and validation sets. Multivariate curve resolution - alternating least-squares (MCR-ALS) constrained analysis allowed the description of the bacterial inoculation process on diseased tissues through pure spectral signatures. DD-SIMCA results indicate that non-target class of samples with higher proximity to the acceptance boundary suggested that they were at earlier stages of infection when compared to more distant ones, presenting lower full distance values. These findings reveal that a handheld UV-Vis transmittance spectrometer is sufficiently sensitive to be used in acquiring biological data with suitable chemometric models for early disease diagnosis and prompt intervention.
2024
Authors
Silva, FM; Queiros, C; Pereira, M; Pinho, T; Barroso, T; Magalhaes, S; Boaventura, J; Santos, F; Cunha, M; Martins, RC;
Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE
Abstract
Fertilization is paramount for agriculture productivity and food security. Plant nutrition pre-established recipes and nutrient uptake are rarely managed by changing the fertilizer composition at the different stages of the plant life cycle. Herein we perform a literature review analysis - since the year 2000 and onwards - of the state-of-the-art capabilities of Nitrogen, Phosphorous, and Potassium (NPK) sensors for liquid fertilizers ( e.g. , hydroponics). From the initial search hits of 1660 results, only 53 publications had relevant information for this topic; from these, only 9 had NPK quantitative information. Qualitative analysis was performed by determining the number of publications for each nutrient, according to sample complexity and existing single, multiplexed or hybrid technologies. Quantitative assessment was performed by extracting the bias and linearity, the limit of detection and concentration ranges of sensor operation, framed into the context of the sensor technology development stage and sample compositional complexity. The most common technologies are colorimetry, ionselective electrodes, optrodes, chemosensors, and optical spectroscopy. The most abundant technologies are for nitrate quantification, from which ion-selective electrodes are the most widely used technology, and sensors for phosphate quantification are the less developed. Most are at low technological levels of development, not dealing with the complexity of agriculture samples due to matrix effects and interference. Measuring the fertilizer composition, nutrient uptake, the state of the chemical network, and controlling the release of nutrients using new functional materials, is one of the most important challenges ahead for the existence of precision fertilization. Intelligent sensing and smart materials are today the most successful strategy for dealing with matrix effects and interferences, being led by ion-selective electrodes and spectroscopy technologies.
2024
Authors
Mesquita R.; Costa T.; Coelho L.; Silva M.F.;
Publication
Lecture Notes in Mechanical Engineering
Abstract
Diabetes, a chronic condition affecting millions of people, requires ongoing medical care and treatment, which can place a significant financial burden on society, directly and indirectly. In this paper we propose a vision-robotics system for the automatic assessment of the diabetic foot, one the exams used for the disease management. We present and discuss various computer vision techniques that can support the core operation of the system. U-Net and Segnet, two popular convolutional network architectures for image segmentation are applied in the current case. Hardcoded and machine learning pipelines are explained and compared using different metrics and scenarios. The obtained results show the advantages of the machine learning approach but also point to the importance of hard coded rules, especially when well know areas, such as the human foot, are the systems’ target. Overall, the system achieved very good results, paving the way to a fully automated clinical system.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.