2021
Authors
Mesonero Santos, P; Fernandez Medina, A; Coelho, LCC; Viveiros, D; Jorge, PA; Belenguer, T; Heredero, RL;
Publication
SENSORS
Abstract
This work presents an experimental study on the effects of gamma radiation on Long Period Fiber Gratings (LPFGs) in a low-dose test campaign to evaluate their eventual degradation. The study was carried out with standard single-mode fibers where the grating was inscribed using the Electric-Arc Discharge (EAD) technique. Before the gamma campaign, a detailed optical characterization was performed with repeatability tests to verify the accuracy of the setup and the associated error sources. The gamma-induced changes up to a dose of 200 krad and the recovery after radiation were monitored with the Dip Wavelength Shift (DWS). The results show that the gamma sensitivity for a total dose of 200 krad is 11 pm/krad and a total DWS of 2.3 nm has been observed with no linear dependence. Post-radiation study shows that recovery from radiation-induced wavelength shift is nearly complete in about 4000 h. Experimental results show that the changes suffered under gamma irradiation of these LPFGs are temporary making them a good choice as sensors in space applications.
2021
Authors
Peixoto, R; Pires, JPS; Monteiro, CS; Raposo, M; Ribeiro, PA; Silva, SO; Frazao, O; Lopes, JMVP;
Publication
PHYSICAL REVIEW APPLIED
Abstract
We propose a fiber-based environmental sensor that exploits the reflection-phase-shift tunability provided by the use of layered coatings composed of dielectric slabs spaced by conducting membranes. A transfer-matrix study is done in a simplified theoretical model, for which an enhanced sensitivity of the reflection interference pattern to the output medium is demonstrated, in the typical refractive index range of liquid media. An experimental configuration using a cascaded Fabry-Perot microcavity coated by a graphene oxide/polyethylenimine (GO/PEI) multilayered structure is demonstrated. Its cost-effective chemical production method makes graphene oxide-based hybrid coatings excellent candidates for future real-life sensing devices.
2021
Authors
Vasconcelos, H; Coelho, LCC; Matias, A; Saraiva, C; Jorge, PAS; de Almeida, JMMM;
Publication
BIOSENSORS-BASEL
Abstract
Biogenic amines (BAs) are well-known biomolecules, mostly for their toxic and carcinogenic effects. Commonly, they are used as an indicator of quality preservation in food and beverages since their presence in higher concentrations is associated with poor quality. With respect to BA's metabolic pathways, time plays a crucial factor in their formation. They are mainly formed by microbial decarboxylation of amino acids, which is closely related to food deterioration, therefore, making them unfit for human consumption. Pathogenic microorganisms grow in food without any noticeable change in odor, appearance, or taste, thus, they can reach toxic concentrations. The present review provides an overview of the most recent literature on BAs with special emphasis on food matrixes, including a description of the typical BA assay formats, along with its general structure, according to the biorecognition elements used (enzymes, nucleic acids, whole cells, and antibodies). The extensive and significant amount of research that has been done to the investigation of biorecognition elements, transducers, and their integration in biosensors, over the years has been reviewed.
2021
Authors
Robalinho, P; Gomes, A; Frazao, O;
Publication
IEEE SENSORS JOURNAL
Abstract
In this work, a colossal enhancement of strain sensitivities through the push-pull deformation method in interferometry is reported for the first time. For the demonstration of the new method, two cascaded interferometers in a fiber loop mirror are used. Usually, strain is applied at the fiber end of the interferometers. In this work, we propose applying strain at the middle of the two cascaded interferometers whereas the fiber ends of the sensor are fixed. Strain is then applied in the fusion region between the two-cascaded interferometers in a push-pull configuration, thus ensuring simultaneously the extension of one interferometer and the compression of the other. Although the carrier signal is maintained constant, the proposed technique induces a colossal enhancement of sensitivity in the envelope signal. Strain sensitivities up to 10000 pm/ $\mu \varepsilon $ are achieved.
2021
Authors
Barroso, TG; Ribeiro, L; Gregório, H; Santos, F; Martins, RC;
Publication
Chemistry Proceedings
Abstract
2021
Authors
Dias, B; Santos, P; Jorge, PAS; de Almeida, JMMM; Coelho, LCC;
Publication
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE
Abstract
The use of Long-Period Fiber Gratings (LPFGs) as sensors has been thoroughly researched, given the multitude of parameters these structures can monitor by themselves (such as temperature, strain, curvature) and the potential for combination with other materials that allow for monitoring of parameters such as humidity, pH and chemical concentration, at a low price and with easy fabrication processes available. This interest has increased the need for the development of interrogation systems for these sensors, particularly in the C-band spectral region. Given the cost and physical limitations (such as size and weight) of traditional solutions like Optical Spectrum Analyzers (OSA), the development of low-cost approaches for LPFG spectral analysis became an important topic that needed further development. The development of a simple curve fitting routine for LPFG spectra is reported in this article, along with a framework for automatic detection of certain physical phenomena such as corrosion and the presence of chemical species, among others.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.