2020
Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;
Publication
JOURNAL OF OPTICS
Abstract
Near-surface optical waveguides were fabricated in alkaline earth boro-aluminosilicate glass (Eagle2000), by femtosecond laser direct writing, using two distinct approaches. First, the capability of directly inscribing optical waveguides close to the surface was tested, and then, compared to the adoption of post writing wet etching to bring to the surface waveguides inscribed at greater depths. Laser ablation was found to limit the minimum surface to core center distance to 6.5 mu m in the first method, with anisotropic wet etching limiting the latter to 3 mu m without any surface deformation; smaller separations can be achieved at the cost of the planar surface topography. Furthermore, the waveguide's cross-section was seen to vary for laser inscription nearing the surface, observations that were also corroborated by its distinct guiding characteristics when compared to the adoption of post writing wet etching. The spectral analysis (in the 500-1700 nm range) also evidenced an increase in insertion loss for longer wavelengths and smaller surface to core center separations, caused, most likely, by coupling loss due to the interaction between the propagating mode and the surface. Different lengths of waveguide exposed to the surface were also tested, revealing that scattering loss due to surface roughness is not an issue at the centimeter scale.
2020
Authors
Ferreira, WSJ; dos Santos, PSS; Caldas, P; Jorge, PAS; Sakamoto, JMS;
Publication
EPJ Web of Conferences
Abstract
2020
Authors
Zibaii, MI; Layeghi, A; Dargahi, L; Haghparast, A; Frazao, O;
Publication
Journal of Science and Technological Researches
Abstract
2019
Authors
Viveiros, D; Almeida, JMMMd; Coelho, L; Vasconcelos, H; Amorim, VA; Maia, JM; Jorge, PAS;
Publication
Proceedings
Abstract
2019
Authors
Mendes, JP; Coelho, L; Kovacs, B; de Almeida, JMMM; Pereira, CM; Jorge, PAS; Borges, MT;
Publication
SENSORS
Abstract
A sensing configuration for the real-time monitoring, detection, and quantification of dissolved carbon dioxide (dCO(2)) was developed for aquaculture and other applications in freshwater and saline water. A chemical sensing membrane, based on a colorimetric indicator, is combined with multimode optical fiber and a dual wavelength light-emitting diode (LED) to measure the dCO(2)-induced absorbance changes in a self-referenced ratiometric scheme. The detection and processing were achieved with an embeded solution having a mini spectrometer and microcontroller. For optrode calibration, chemical standard solutions using sodium carbonate in acid media were used. Preliminary results in a laboratory environment showed sensitivity for small added amounts of CO2 (0.25 mg.L-1). Accuracy and response time were not affected by the type of solution, while precision was affected by salinity. Calibration in freshwater showed a limit of detection (LOD) and a limit of quantification (LOQ) of 1.23 and 1.87 mg.L-1, respectively. Results in saline water (2.5%) showed a LOD and LOQ of 1.05 and 1.16 mg.L-1, respectively. Generally, performance was improved when moving from fresh to saline water. Studies on the dynamics of dissolved CO2 in a recirculating shallow raceway system (SRS+RAS) prototype showed higher precision than the tested commercial sensor. The new sensor is a compact and robust device, and unlike other sensors used in aquaculture, stirring is not required for correct and fast detection. Tests performed showed that this new sensor has a fast accurate detection as well as a strong potential for assessing dCO(2) dynamics in aquaculture applications.
2019
Authors
Gomes, AD; Ferreira, MS; Bierlich, J; Kobelke, J; Rothhardt, M; Bartelt, H; Frazao, O;
Publication
SENSORS
Abstract
The optical Vernier effect magnifies the sensing capabilities of an interferometer, allowing for unprecedented sensitivities and resolutions to be achieved. Just like a caliper uses two different scales to achieve higher resolution measurements, the optical Vernier effect is based on the overlap in the responses of two interferometers with slightly detuned interference signals. Here, we present a novel approach in detail, which introduces optical harmonics to the Vernier effect through Fabry-Perot interferometers, where the two interferometers can have very different frequencies in the interferometric pattern. We demonstrate not only a considerable enhancement compared to current methods, but also better control of the sensitivity magnification factor, which scales up with the order of the harmonics, allowing us to surpass the limits of the conventional Vernier effect as used today. In addition, this novel concept opens also new ways of dimensioning the sensing structures, together with improved fabrication tolerances.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.