2018
Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, LM; Tuchin, VV;
Publication
BIOPHOTONICS: PHOTONIC SOLUTIONS FOR BETTER HEALTH CARE VI
Abstract
Knowledge of the optical properties of tissues is necessary, since they change from tissue to tissue and can differ between normal and pathological conditions. These properties are used in light transport models with various areas of application. In general, tissues have significantly high scattering coefficient when compared to the absorption coefficient and such difference usually increases with decreasing wavelength. The study of the wavelength dependence of the optical properties has been already made for several animal and human tissues, but extensive research is still needed in this field. Considering that most of the Biophotonics techniques used in research and clinical practice use visible to NIR light, we have estimated the optical properties of colorectal muscle (muscularis propria) between 400 and 1000 nm. The samples used were collected from patients undergoing resection surgery for colorectal carcinoma. The estimated scattering coefficient for colorectal muscle decreases exponentially with wavelength from 122 cm(-1) at 400 nm to 95 cm(-1) at 650 nm and to 91 cm(-1) at 1000 nm. The absorption coefficient shows a wavelength dependence according to the behavior seen for other tissues, since it decreases from 8 cm(-1) at 400 nm to 2.6 cm(-1) at 650 nm and to 1.3 cm(-1) at 1000 nm. The estimated optical properties differ from the ones that we have previously obtained for normal and pathological colorectal mucosa. The data obtained in this study covers an extended spectral range and it can be used for planning optical clearing treatments for some wavelengths of interest.
2018
Authors
Vasconcelos H.; De Almeida J.M.M.M.; Jorge P.A.S.; Coelho L.;
Publication
Optics InfoBase Conference Papers
Abstract
The wavelength sensitivity and spectral resolution of Mach-Zehnder fiber interferometers based on uncoated and TiO2 coated LPFGs is presented and compared with TiO2 coated single LPFGs optical fiber sensors.
2018
Authors
Carneiro, I; Carvelho, S; Silva, V; Henrique, R; Oliveira, L; Tuchin, VV;
Publication
JOURNAL OF BIOMEDICAL OPTICS
Abstract
To characterize the optical clearing treatments in human colorectal tissues and possibly to differentiate between treatments of normal and pathological tissues, we have used a simple indirect method derived from Mie scattering theory to estimate the kinetics of the reduced scattering coefficient. A complementary method to estimate the kinetics of the scattering coefficient is also used so that the kinetics of the anisotropy factor and of the refractive index are also calculated. Both methods rely only on the thickness and collimated transmittance measurements made during treatment. The results indicate the expected time dependencies for the optical properties of both tissues: an increase in the refractive index and anisotropy factor and a decrease in the scattering coefficients. The similarity in the kinetics obtained for normal and pathological tissues indicates that optical clearing treatments can be applied also in pathological tissues to produce similar effects. The estimated time dependencies using experimental spectral data in the range from 400 to 1000 nm allowed us to compare the kinetics of the optical properties between different wavelengths. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
2018
Authors
Oliveira, LM; Carneiro, I; Carvalho, S; Henrique, R; Tuchina, DK; Timoshina, PA; Bashkatov, AN; Genina, EA; Tuchin, VV;
Publication
2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018)
Abstract
With the objective of developing a diagnostic tool, we have used the immersion optical clearing method and studied normal and pathological tissues (cancer, diabetes) under treatment by optical clearing agents (OCAs). In order to quantify pathology status OCA diffusion properties in different tissues were measured. We have demonstrated that free water content in cancerous tissues is higher than in normal.
2018
Authors
De Almeida J.M.M.M.; Vasconcelos H.; Jorge P.A.S.; Coelho L.;
Publication
Optics InfoBase Conference Papers
Abstract
Refractive index sensors based on localized surface plasmon resonance are presented through the fabrication of gold nano-islands on top of optical fiber tips. Repeated dewetting process led to an increase of sensitivity from 60 to 186nm/RIU.
2018
Authors
Gomes, AD; Silveira, B; Warren Smith, SC; Becker, M; Rothhardt, M; Frazao, O;
Publication
OPTICS AND LASER TECHNOLOGY
Abstract
A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 +/- 1 nm/RlU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 0.06 pm/degrees C). The cross sensitivity for this structure is 2.0 x 10(-5) RlU/degrees C.. The potential for simultaneous measurement of refractive index and temperature is also studied.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.