2017
Authors
Silva, S; Frazao, O;
Publication
2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS)
Abstract
This work presents a multimode interference-based fiber sensor in a cavity ring-down system for sensing temperature-induced refractive index (RI) changes of water. The sensing head is based in multimodal interference (MMI) and it was placed inside the fiber loop cavity of the CRD system. A modulated laser source was used to send pulses down into the fiber loop cavity and an erbium-doped fiber amplifier (EDFA) was placed in the fiber ring to provide an observable signal with a reasonable decay time. The behavior of the sensing head to temperature was studied due to its intrinsic sensitivity to said parameter - a sensitivity of -1.6 10(-9) s/C was attained. This allowed eliminating the temperature component from RI measurement of water and a linear sensitivity of 580 mu s/RIU in the RI range of 1.324-1.331 was obtained.
2017
Authors
Silva, S; Frazao, O;
Publication
PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON PHOTONICS, OPTICS AND LASER TECHNOLOGY (PHOTOPTICS)
Abstract
A brief review in the fibre cavity ring-down (CRD) technique is presented. It addresses the latest developments in CRD technique for sensing applications, undergone at INESC TEC. The CRD is based on the conventional configuration with the possibility of adding amplification in order to compensate the output signal losses induced by the sensing head. The results obtained for strain, curvature and refractive index sensing are presented, corresponding to distinct sensing structures, namely, a chirped fibre Bragg grating (FBG), a long period grating (LPG) and a multimode interference (MMI) based sensor.
2017
Authors
Paiva, JS; Ribeiro, RSR; Jorge, PAS; Rosa, CC; Cunha, JPS;
Publication
ENBENG 2017 - 5th Portuguese Meeting on Bioengineering, Proceedings
Abstract
Optical Tweezers (OT) are able to trap/manipulate dielectric particles with few microns in a contactless manner due to forces exerted on them by a strongly focused optical beam. OT are being applied in Biology/Medicine, especially Optical Fiber Tweezers (OFT), for being simpler and more flexible than the conventional setups. Despite of the trapping phenomena of symmetrical particles by OFTs being already modeled, effects regarding complex bodies remain poorly understood. Here we provide a 2D characterization of the trapping forces exerted by a laser OFT on a geometric form of a Red Blood Cell (RBC), occupying different positions in a grid, using the method proposed by Barnett&Loudon. Comparisons were made between the forces exerted on a RBC having the mean normal size; a RBC with 80% of the normal size and an 1.5µm circular particle, due to the size and shape variability of biological-derived structures. The influence of RBCs inclination angles regarding its major axis on trapping performance was also evaluated for angles of p/4 and p/2. Simulation results showed that trapping phenomena are possible for all the conditions evaluated, as well as calculated trapping forces range was according with the literature (pN). We observed that, despite of modeled particles having the same optical characteristics, features such as particle geometry, size, position and inclination degree influence trapping. Trapping forces magnitude was higher for RBC relatively to the circular symmetrical particle; for large RBCs than RBCs with smaller dimensions; and for inclined RBCs than erythrocytes horizontally aligned. Those results reinforce the importance of modeling optical experiments to determine relevant parameters which affect trapping performance. © 2017 IEEE.
2017
Authors
Amorim, VA; Maia, JM; Alexandre, D; Marques, PVS;
Publication
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
Optical Y-junction power splitters owe their inherent broadband spectral behavior to their design. However, depending on the fabrication technique employed, asymmetries in the junction might arise, perturbing its performance; this is the case in femtosecond laser written Y-junctions where one arm is typically written over the top of the other. In this letter, the spectral behavior of Y-junctions fabricated in fused silica by the femtosecond laser direct writing technique was analyzed and optimized for the first time, to the best of our knowledge. The junction arms output power balance as well as the corresponding spectral flatness between 1300 and 1600 nm is substantially increased by the implementation of an initial separation between the arms at the junction diverging point, enabling the manufacturing of balanced broadband Y-junctions.
2017
Authors
Monteiro, CS; Santos, BF; Silva, SO; Abreu, P; Restivo, MT; Frazao, O;
Publication
2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS)
Abstract
A sensor based on Fabry-Perot interferometry with a hollow microsphere cavity embedded in a 3D printed structure is proposed. The sensor was tested for lateral loading and temperature, showing promising results. By imprintring the sensor on the structure, the dynamic range of application is severely increased enabling the application of the sensor in harsh environments.
2017
Authors
Paiva, JS; Ribeiro, RSR; Jorge, PAS; Rosa, CC; Guerreiro, A; Cunha, JPS;
Publication
Optics InfoBase Conference Papers
Abstract
A computational method for optical fiber trapping of healthy and Malariainfected blood cells characterization is proposed. A trapping force relation with the infection stage was found, which could trigger the development of a diagnostic sensor. © OSA 2017.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.