2022
Authors
Barros, BJ; Cunha, JPS;
Publication
2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022)
Abstract
Optical Fiber Tweezers (OFT) can be used to study manifestations of light-matter interactions and deduce properties of micron-sized bioparticles trapped within its laser focal point. Our group has previously co-invented an innovative approach for this purpose based on advanced optical signal processing named iLoF-intelligent Lab on Fiber- with very relevant results revealing it is possible to create a variety of time and frequency magnitude features for label-free and non-invasive optical fiber sensing technologies. Nevertheless, phase spectra has been neglected in these photonics approaches. In this context, we present an exploratory study on informative content extraction from phase of OFT back-scattering signals. Furthermore, we analyze if these phase features provide better discriminative performance when compared spectrum magnitude ones previously used by the iLoF technology. The phase spectrum of back-scattering signals showed to retain patterns related to the intrinsic properties of each particle and the derived set of features proved to be robust to detect and discriminate from synthetic microparticles to highly similar cancer-derived mammalian cells, with better discriminative potential than their previous magnitude spectral counterparts. Such results introduce phase as a potential new domain to obtain discriminative light pattern features from OFT systems applied to micron-sized particles detection. The high sensitivity of the analyzed phase features to different micron-sized bioparticles, namely cancer-associated glycoforms, presents great potential for future applications in point-of-care diagnosis, such as detection and identification of molecules circulating in the blood or its derivatives with important clinical outcomes.
2022
Authors
Silva N.A.; Capela D.; Ferreira M.; Gonçalves F.; Lima A.; Guimarães D.; Jorge P.A.S.;
Publication
Results in Optics
Abstract
One of the caveats of laser-induced breakdown spectroscopy technique is the performance for quantification purposes, in particular when the matrix of the sample is complex or the problem spans over a wide range of concentrations. These two questions are key issues for geology applications including ore grading in mining operations and typically lead to sub-optimal results. In this work, we present the implementation of a class of clustered regression calibration algorithms, that previously search the sample space looking for similar samples before employing a linear calibration model that is trained for that cluster. For a case study involving lithium quantification in three distinct exploration drills, the obtained results demonstrate that building local models can improve the performance of standard linear models in particular in the lower concentration region. Furthermore, we show that the models generalize well for unseen data of exploration drills on distinct rock veins, which can motivate not only further research on this class of methods but also technological applications for similar mining environments.
2022
Authors
Dias, B; Carvalho, J; Mendes, JP; Almeida, JMMM; Coelho, LCC;
Publication
POLYMERS
Abstract
Relative humidity (RH) monitorization is of extreme importance on scientific and industrial applications, and optical fiber sensors (OFS) may provide adequate solutions. Typically, these kinds of sensors depend on the usage of humidity responsive polymers, thus creating the need for the characterization of the optical and expansion properties of these materials. Four different polymers, namely poly(vinyl alcohol), poly(ethylene glycol), Hydromed (TM) D4 and microbiology agar were characterized and tested using two types of optical sensors. First, optical fiber Fabry-Perot (FP) tips were made, which allow the dynamical measurement of the polymers' response to RH variations, in particular of refractive index, film thickness, and critical deliquescence RH. Using both FP tips and Long-Period fiber gratings, the polymers were then tested as RH sensors, allowing a comparison between the different polymers and the different OFS. For the case of the FP sensors, the PEG tips displayed excellent sensitivity above 80%RH, outperforming the other polymers. In the case of LPFGs, the 10% (wt/wt) PVA one displayed excellent sensitivity in a larger working range (60 to 100%RH), showing a valid alternative to lower RH environment sensing.
2022
Authors
Vasconcelos, H; De Almeida, JMMM; Mendes, J; Dias, B; Jorge, PAS; Saraiva, C; Coelho, LCC;
Publication
Optics InfoBase Conference Papers
Abstract
Long period fiber gratings coated with TiO2 and poly(ethylene-co-vinyl acetate) (PEVA), a polymeric structure permeable biogenic amines found in foodstuff, were used to detect these compounds through the wavelength shift of its attenuation band. © 2022 The Author(s).
2022
Authors
Perez-Herrera, RA; Soares, L; Silva, S; Frazao, O;
Publication
SENSORS
Abstract
In this study, an interrogation system based on an erbium-doped fiber ring cavity for refractive index measurements is presented and experimentally demonstrated. This cavity ring includes a 1 x 3 coupler wherein one of the fiber output ports is used to increase the optical power of the system by means of an FBG used as a reflector. The other two output ports are used as a refractive index sensing head and reference port, respectively. An experimental demonstration of this proposed sensor system for the measurement of a distinct refractive index is presented.
2022
Authors
Ferreira, TD; Rocha, V; Silva, D; Guerreiro, A; Silva, NA;
Publication
NEW JOURNAL OF PHYSICS
Abstract
The propagation of light in nonlinear optical media has been widely used as a tabletop platform for emulating quantum-like phenomena due to their similar theoretical description to quantum fluids. These fluids of light are often used to study two-dimensional phenomena involving superfluid-like flows, yet turbulent regimes still remain underexplored. In this work, we study the possibility of creating two-dimensional turbulent phenomena and probing their signatures in the kinetic energy spectrum. To that end, we emulate and disturb a fluid of light with an all-optical defect using the propagation of two beams in a photorefractive crystal. Our experimental results show that the superfluid regime of the fluid of light breaks down at a critical velocity at which the defect starts to exert a drag force on the fluid, in accordance with the theoretical and numerical predictions. Furthermore, in this dissipative regime, nonlinear perturbations are excited on the fluid that can decay into vortex structures and thus precede a turbulent state. Using the off-axis digital holography method, we reconstructed the complex description of the output fluids and calculated the incompressible component of the kinetic energy. With these states, we observed the expected power law that characterizes the generated turbulent vortex dipole structures. The findings enclosed in this manuscript align with the theoretical predictions for the vortex structures of two-dimensional quantum fluids and thus may pave the way to the observation of other distinct hallmarks of turbulent phenomena, such as distinct turbulent regimes and their associated power laws and energy cascades.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.