Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Álvaro Figueira

2023

Automated Assessment in Computer Science: A Bibliometric Analysis of the Literature

Authors
Paiva, JC; Figueira, A; Leal, JP;

Publication
LEARNING TECHNOLOGIES AND SYSTEMS, ICWL 2022, SETE 2022

Abstract
Over the years, several systematic literature reviews have been published reporting advances in tools and techniques for automated assessment in Computer Science. However, there is not yet a major bibliometric study that examines the relationships and influence of publications, authors, and journals to make these research trends visible. This paper presents a bibliometric study of automated assessment of programming exercises, including a descriptive analysis using various bibliometric measures and data visualizations. The data was collected from the Web of Science Core Collection. The obtained results allow us to identify the most influential authors and their affiliations, monitor the evolution of publications and citations, establish relationships between emerging themes in publications, discover research trends, and more. This paper provides a deeper knowledge of the literature and facilitates future researchers to start in this field.

2021

An organized review of key factors for fake news detection

Authors
Guimarães, N; Figueira, A; Torgo, L;

Publication
CoRR

Abstract

2024

Topic Extraction: BERTopic's Insight into the 117th Congress's Twitterverse

Authors
Mendonça, M; Figueira, A;

Publication
INFORMATICS-BASEL

Abstract
As social media (SM) becomes increasingly prevalent, its impact on society is expected to grow accordingly. While SM has brought positive transformations, it has also amplified pre-existing issues such as misinformation, echo chambers, manipulation, and propaganda. A thorough comprehension of this impact, aided by state-of-the-art analytical tools and by an awareness of societal biases and complexities, enables us to anticipate and mitigate the potential negative effects. One such tool is BERTopic, a novel deep-learning algorithm developed for Topic Mining, which has been shown to offer significant advantages over traditional methods like Latent Dirichlet Allocation (LDA), particularly in terms of its high modularity, which allows for extensive personalization at each stage of the topic modeling process. In this study, we hypothesize that BERTopic, when optimized for Twitter data, can provide a more coherent and stable topic modeling. We began by conducting a review of the literature on topic-mining approaches for short-text data. Using this knowledge, we explored the potential for optimizing BERTopic and analyzed its effectiveness. Our focus was on Twitter data spanning the two years of the 117th US Congress. We evaluated BERTopic's performance using coherence, perplexity, diversity, and stability scores, finding significant improvements over traditional methods and the default parameters for this tool. We discovered that improvements are possible in BERTopic's coherence and stability. We also identified the major topics of this Congress, which include abortion, student debt, and Judge Ketanji Brown Jackson. Additionally, we describe a simple application we developed for a better visualization of Congress topics.

2024

Comparing Semantic Graph Representations of Source Code: The Case of Automatic Feedback on Programming Assignments

Authors
Paiva, JC; Leal, JP; Figueira, A;

Publication
COMPUTER SCIENCE AND INFORMATION SYSTEMS

Abstract
Static source code analysis techniques are gaining relevance in automated assessment of programming assignments as they can provide less rigorous evaluation and more comprehensive and formative feedback. These techniques focus on source code aspects rather than requiring effective code execution. To this end, syntactic and semantic information encoded in textual data is typically represented internally as graphs, after parsing and other preprocessing stages. Static automated assessment techniques, therefore, draw inferences from intermediate representations to determine the correctness of a solution and derive feedback. Consequently, achieving the most effective semantic graph representation of source code for the specific task is critical, impacting both techniques' accuracy, outcome, and execution time. This paper aims to provide a thorough comparison of the most widespread semantic graph representations for the automated assessment of programming assignments, including usage examples, facets, and costs for each of these representations. A benchmark has been conducted to assess their cost using the Abstract Syntax Tree (AST) as a baseline. The results demonstrate that the Code Property Graph (CPG) is the most feature -rich representation, but also the largest and most space -consuming (about 33% more than AST).

2024

GANs in the Panorama of Synthetic Data Generation Methods

Authors
Vaz, B; Figueira, Á;

Publication
ACM Transactions on Multimedia Computing, Communications, and Applications

Abstract
This paper focuses on the creation and evaluation of synthetic data to address the challenges of imbalanced datasets in machine learning applications (ML), using fake news detection as a case study. We conducted a thorough literature review on generative adversarial networks (GANs) for tabular data, synthetic data generation methods, and synthetic data quality assessment. By augmenting a public news dataset with synthetic data generated by different GAN architectures, we demonstrate the potential of synthetic data to improve ML models’ performance in fake news detection. Our results show a significant improvement in classification performance, especially in the underrepresented class. We also modify and extend a data usage approach to evaluate the quality of synthetic data and investigate the relationship between synthetic data quality and data augmentation performance in classification tasks. We found a positive correlation between synthetic data quality and performance in the underrepresented class, highlighting the importance of high-quality synthetic data for effective data augmentation.

2023

New Insights in Machine Learning and Deep Neural Networks

Authors
Figueira, Á; Renna, F;

Publication

Abstract

  • 17
  • 18