Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Gama

2023

Fault Forecasting Using Data-Driven Modeling: A Case Study for Metro do Porto Data Set

Authors
Davari, N; Veloso, B; Ribeiro, RP; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
The demand for high-performance solutions for anomaly detection and forecasting fault events is increasing in the industrial area. The detection and forecasting faults from time-series data are one critical mission in the Internet of Things (IoT) data mining. The classical fault detection approaches based on physical modelling are limited to some measurable output variables. Accurate physical modelling of vehicle dynamics requires substantial prior information about the system. On the other hand, data-driven modelling techniques accurately represent the system's dynamic from data collection. Experimental results on large-scale data sets from Metro do Porto subsystems verify that our method performs high-quality fault detection and forecasting solutions. Also, health indicator obtained from the principal component analysis of the forecasting solution is applied to predict the remaining useful life.

2023

Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part I

Authors
Koprinska, I; Mignone, P; Guidotti, R; Jaroszewicz, S; Fröning, H; Gullo, F; Ferreira, PM; Roqueiro, D; Ceddia, G; Nowaczyk, S; Gama, J; Ribeiro, RP; Gavaldà, R; Masciari, E; Ras, ZW; Ritacco, E; Naretto, F; Theissler, A; Biecek, P; Verbeke, W; Schiele, G; Pernkopf, F; Blott, M; Bordino, I; Danesi, IL; Ponti, G; Severini, L; Appice, A; Andresini, G; Medeiros, I; Graça, G; Cooper, LAD; Ghazaleh, N; Richiardi, J; Miranda, DS; Sechidis, K; Canakoglu, A; Pidò, S; Pinoli, P; Bifet, A; Pashami, S;

Publication
PKDD/ECML Workshops (1)

Abstract

2023

Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II

Authors
Koprinska, I; Mignone, P; Guidotti, R; Jaroszewicz, S; Fröning, H; Gullo, F; Ferreira, PM; Roqueiro, D; Ceddia, G; Nowaczyk, S; Gama, J; Ribeiro, RP; Gavaldà, R; Masciari, E; Ras, ZW; Ritacco, E; Naretto, F; Theissler, A; Biecek, P; Verbeke, W; Schiele, G; Pernkopf, F; Blott, M; Bordino, I; Danesi, IL; Ponti, G; Severini, L; Appice, A; Andresini, G; Medeiros, I; Graça, G; Cooper, LAD; Ghazaleh, N; Richiardi, J; Miranda, DS; Sechidis, K; Canakoglu, A; Pidò, S; Pinoli, P; Bifet, A; Pashami, S;

Publication
PKDD/ECML Workshops (2)

Abstract

2023

Study on Correlation Between Vehicle Emissions and Air Quality in Porto

Authors
Shaji, N; Andrade, T; Ribeiro, RP; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I

Abstract
Road transportation emissions have increased in the last few decades and have been the primary source of pollutants in urban areas with ever-growing populations. In this context, it is important to have effective measures to monitor road emissions in regions. Creating an emission inventory over a region that can map the road emission based on the vehicle trips can be helpful for this. In this work, we show that it is possible to use raw GPS data to measure levels of pollution in a region. By transforming the data using feature engineering and calculating the vehicle-specific power (VSP), we show the areas with higher emissions levels made by a fleet of taxis in Porto, Portugal. The Uber H3 grid system is used to decompose the city into hexagonal grids to sample nearby data points into a region. We validate our experiments on real-world sensor datasets deployed in several city regions, showing the correlation with VSP and true values for several pollutants attesting to the method's usefulness.

2023

Fault Detection in Wastewater Treatment Plants: Application of Autoencoders Models with Streaming Data

Authors
Salles, R; Mendes, J; Ribeiro, RP; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I

Abstract
Water is a fundamental human resource and its scarcity is reflected in social, economic and environmental problems. Water used in human activities must be treated before reusing or returning to nature. This treatment takes place in wastewater treatment plants (WWTPs), which need to perform their functions with high quality, low cost, and reduced environmental impact. This paper aims to identify failures in real-time, using streaming data to provide the necessary preventive actions to minimize damage to WWTPs, heavy fines and, ultimately, environmental hazards. Convolutional and Long short-term memory (LSTM) autoencoders (AEs) were used to identify failures in the functioning of the dissolved oxygen sensor used in WWTPs. Five faults were considered (drift, bias, precision degradation, spike and stuck) in three different scenarios with variations in the appearance order, intensity and duration of the faults. The best performance, considering different model configurations, was achieved by Convolutional-AE.

2022

MetroPT2: A Benchmark dataset for predictive maintenance

Authors
Veloso, B; Gama, J; Ribeiro, RP; Pereira, P;

Publication

Abstract

  • 48
  • 92