Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Spatiotemporal Estimation of the Potential Adoption of Photovoltaic Systems on Urban Residential Roofs

Authors
Mejia, MA; Macedo, LH; Pinto, T; Franco, JF;

Publication
ELECTRONICS

Abstract
The adoption of residential photovoltaic (PV) systems to mitigate the effects of climate change has been incentivized in recent years by government policies. Due to the impacts of these systems on the energy mix and the electrical grid, it is essential to understand how these technologies will expand in urban areas. To fulfill that need, this article presents an innovative method for modeling the diffusion of residential PV systems in urban environments that employs spatial analysis and urban characteristics to identify residences at the subarea level with the potential for installing PV systems, along with temporal analysis to project the adoption growth of these systems over time. This approach integrates urban characteristics such as population density, socioeconomic data, public environmental awareness, rooftop space availability, and population interest in new technologies. Results for the diffusion of PV systems in a Brazilian city are compared with real adoption data. The results are presented in thematic maps showing the spatiotemporal distribution of potential adopters of PV systems. This information is essential for creating efficient decarbonization plans because, while many households can afford these systems, interest in new technologies and knowledge of the benefits of clean energy are also necessary for their adoption.

2024

Application of Example-Based Explainable Artificial Intelligence (XAI) for Analysis and Interpretation of Medical Imaging: A Systematic Review

Authors
Fontes, M; de Almeida, JDS; Cunha, A;

Publication
IEEE ACCESS

Abstract
Explainable Artificial Intelligence (XAI) is an area of growing interest, particularly in medical imaging, where example-based techniques show great potential. This paper is a systematic review of recent example-based XAI techniques, a promising approach that remains relatively unexplored in clinical practice and medical image analysis. A selection and analysis of recent studies using example-based XAI techniques for interpreting medical images was carried out. Several approaches were examined, highlighting how each contributes to increasing accuracy, transparency, and usability in medical applications. These techniques were compared and discussed in detail, considering their advantages and limitations in the context of medical imaging, with a focus on improving the integration of these technologies into clinical practice and medical decision-making. The review also pointed out gaps in current research, suggesting directions for future investigations. The need to develop XAI methods that are not only technically efficient but also ethically responsible and adaptable to the needs of healthcare professionals was emphasised. Thus, the paper sought to establish a solid foundation for understanding and advancing example-based XAI techniques in medical imaging, promoting a more integrated and patient-centred approach to medicine.

2024

Clinical Perspectives on the Use of Computer Vision in Glaucoma Screening

Authors
Camara, J; Cunha, A;

Publication
MEDICINA-LITHUANIA

Abstract
Glaucoma is one of the leading causes of irreversible blindness in the world. Early diagnosis and treatment increase the chances of preserving vision. However, despite advances in techniques for the functional and structural assessment of the retina, specialists still encounter many challenges, in part due to the different presentations of the standard optic nerve head (ONH) in the population, the lack of explicit references that define the limits of glaucomatous optic neuropathy (GON), specialist experience, and the quality of patients' responses to some ancillary exams. Computer vision uses deep learning (DL) methodologies, successfully applied to assist in the diagnosis and progression of GON, with the potential to provide objective references for classification, avoiding possible biases in experts' decisions. To this end, studies have used color fundus photographs (CFPs), functional exams such as visual field (VF), and structural exams such as optical coherence tomography (OCT). However, it is still necessary to know the minimum limits of detection of GON characteristics performed through these methodologies. This study analyzes the use of deep learning (DL) methodologies in the various stages of glaucoma screening compared to the clinic to reduce the costs of GON assessment and the work carried out by specialists, to improve the speed of diagnosis, and to homogenize opinions. It concludes that the DL methodologies used in automated glaucoma screening can bring more robust results closer to reality.

2024

Economic viability analysis of a Renewable Energy System for Green Hydrogen and Ammonia Production

Authors
Félix, P; Oliveira, F; Soares, FJ;

Publication
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
This paper presents a methodology for assessing the long-term economic feasibility of renewable energy-based systems for green hydrogen and ammonia production. A key innovation of this approach is the incorporation of a predictive algorithm that optimizes day-ahead system operation on an hourly basis, aiming to maximize profit. By integrating this feature, the methodology accounts for forecasting errors, leading to a more realistic economic evaluation. The selected case study integrates wind and PV as renewable energy sources, supplying an electrolyser and a Haber-Bosch ammonia production plant. Additionally, all supporting equipment, including an air separation unit for nitrogen production, compressors, and hydrogen / nitrogen / ammonia storage devices, is also considered. Furthermore, an electrochemical battery is included, allowing for an increased electrolyser load factor and smoother operating regimes. The results demonstrate the effectiveness of the proposed methodology, providing valuable insights and performance indicators for this type of energy systems, enabling informed decision-making by investors and stakeholders.

2024

Supply chain strategies in a global context: a customer value-based perspective

Authors
Pessot, E; Muerza, V; Senna, P; Barros, AC; Fornasiero, R;

Publication
SUPPLY CHAIN FORUM

Abstract
Customer value is influenced by several factors, which impose major challenges to global Supply Chains (SCs) and their management. This study aims to understand how companies tackle these challenges by focusing their global SC management on major strategies and supporting practices. Based on customer value theory, and recognising major trends affecting what end consumers value, we identify four global SC strategies: customer-driven, service-driven, resource-efficient, and closed-loop. A multiple case study carried out in eleven companies in the consumer goods industry explores the practices adopted per each SC strategy in managing global sourcing, production, and distribution networks. Results show the key requirement of selecting tailored practices for SC management that align with the context and the value expected by customers. Operational SC practices entail managing collaborative actions both up and downstream and competing with other SCs and can benefit from the implementation of appropriate digital technologies for customer value creation and delivery, as well as for continuous learning about customer needs.

2024

Application of a Genetic Algorithm for Optimising the Location of Electric Vehicle Charging Stations

Authors
Pinto, J; Mejia, MA; Macedo, LH; Filipe, V; Pinto, T;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
The number of electric vehicles has been increasing significantly due to various factors, such as the higher prices of fossil fuels, concerns about the increasing pollution, and the resulting incentive to use energy from renewable sources. There are currently a few charging facilities, which are still quite scattered, and several are still experimental, requiring appropriate planning of this infrastructure in order to support the growing number of electric vehicles adequately. Thus, optimising the location of charging stations becomes a critical issue, which can be achieved through the application of mathematical models and data analysis tools. An example is genetic algorithms, which have demonstrated their versatility in solving complex optimisation problems, especially those involving multiple variables. This work presents a proposal for a more comprehensive genetic algorithm model that encompasses all variables from the perspectives of all entities involved. Its experimentation was conducted using real data, with the aim of finding the best combination of locations, minimising the total number of stations and maximising the coverage of the area under study. Thus, it is essential to carefully consider user preferences, accessibility, energy demand, and existing electrical infrastructure to ensure an effective and sustainable installation. The findings highlight the crucial role of these computing tools in addressing complex problems from various viewpoints, leading to solutions that cater to the needs of all parties involved. While not necessarily perfect, these solutions represent a balanced compromise across multiple dimensions of the problem. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 105
  • 4039