Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Augmented Reality for Spectral Imaging Applications

Authors
Cavaco, R; Lopes, T; Jorge, PAS; Silva, NA;

Publication
UNCONVENTIONAL OPTICAL IMAGING IV

Abstract
Spectral imaging is a technique that captures spectral information from a scene and maps it onto a 2D image, featuring the potential to reveal hidden features and properties of objects that are invisible to the human eye, such as elemental and molecular compositions. Augmented reality (AR), on the other hand, is a technology that enhances the perception of reality by superimposing digital information on the physical world. While these technologies have different purposes, they can be considered one and the same in terms of providing an user-centric extension of reality. Spectral imaging provides the information that can reveal the underlying nature of objects, while AR provides the method of visualization that can display the information in an intuitive and interactive way. In this work, we present a novel Unity toolkit that combines spectral imaging and a HoloLens 2 AR device to create an interactive and immersive experience for the user. The toolkit enables the interactive visualization of various elemental maps of a 3D rock model in AR using a simple and intuitive interface. With this technique, the user can select a sample model and an elemental map from a preloaded asset library and then see the map projected onto the rock model in AR, using simple interactions such as zoom adjustment, rotation, and pan of the models to explore features and properties in detail. The toolkit offers several advantages, including better contextual interpretation of the spectral data by placing it in relation to the shape and texture of the rock, increased user engagement and curiosity through the creation of a realistic and immersive experience, and ease of decision-making through the provision of comparative tools. In short, by combining spectral imaging and AR, we present an innovative approach that can enrich the user experience and expand the user knowledge of the environment.

2024

A Tight Security Proof for SPHINCS+, Formally Verified

Authors
Barbosa, M; Dupressoir, F; Hülsing, A; Meijers, M; Strub, PY;

Publication
Advances in Cryptology - ASIACRYPT 2024 - 30th International Conference on the Theory and Application of Cryptology and Information Security, Kolkata, India, December 9-13, 2024, Proceedings, Part IV

Abstract

2024

MedShapeNet - a large-scale dataset of 3D medical shapes for computer vision

Authors
Li, JN; Zhou, ZW; Yang, JC; Pepe, A; Gsaxner, C; Luijten, G; Qu, CY; Zhang, TZ; Chen, XX; Li, WX; Wodzinski, M; Friedrich, P; Xie, KX; Jin, Y; Ambigapathy, N; Nasca, E; Solak, N; Melito, GM; Vu, VD; Memon, AR; Schlachta, C; De Ribaupierre, S; Patel, R; Eagleson, R; Chen, XJ; Mächler, H; Kirschke, JS; de la Rosa, E; Christ, PF; Li, HB; Ellis, DG; Aizenberg, MR; Gatidis, S; Küstner, T; Shusharina, N; Heller, N; Andrearczyk, V; Depeursinge, A; Hatt, M; Sekuboyina, A; Löffler, MT; Liebl, H; Dorent, R; Vercauteren, T; Shapey, J; Kujawa, A; Cornelissen, S; Langenhuizen, P; Ben-Hamadou, A; Rekik, A; Pujades, S; Boyer, E; Bolelli, F; Grana, C; Lumetti, L; Salehi, H; Ma, J; Zhang, Y; Gharleghi, R; Beier, S; Sowmya, A; Garza-Villarreal, EA; Balducci, T; Angeles-Valdez, D; Souza, R; Rittner, L; Frayne, R; Ji, YF; Ferrari, V; Chatterjee, S; Dubost, F; Schreiber, S; Mattern, H; Speck, O; Haehn, D; John, C; Nürnberger, A; Pedrosa, J; Ferreira, C; Aresta, G; Cunha, A; Campilho, A; Suter, Y; Garcia, J; Lalande, A; Vandenbossche, V; Van Oevelen, A; Duquesne, K; Mekhzoum, H; Vandemeulebroucke, J; Audenaert, E; Krebs, C; van Leeuwen, T; Vereecke, E; Heidemeyer, H; Röhrig, R; Hölzle, F; Badeli, V; Krieger, K; Gunzer, M; Chen, JX; van Meegdenburg, T; Dada, A; Balzer, M; Fragemann, J; Jonske, F; Rempe, M; Malorodov, S; Bahnsen, FH; Seibold, C; Jaus, A; Marinov, Z; Jaeger, PF; Stiefelhagen, R; Santos, AS; Lindo, M; Ferreira, A; Alves, V; Kamp, M; Abourayya, A; Nensa, F; Hörst, F; Brehmer, A; Heine, L; Hanusrichter, Y; Wessling, M; Dudda, M; Podleska, LE; Fink, MA; Keyl, J; Tserpes, K; Kim, MS; Elhabian, S; Lamecker, H; Zukic, D; Paniagua, B; Wachinger, C; Urschler, M; Duong, L; Wasserthal, J; Hoyer, PF; Basu, O; Maal, T; Witjes, MJH; Schiele, G; Chang, TC; Ahmadi, SA; Luo, P; Menze, B; Reyes, M; Deserno, TM; Davatzikos, C; Puladi, B; Fua, P; Yuille, AL; Kleesiek, J; Egger, J;

Publication
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK

Abstract
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.

2024

CINDERELLA Trial: validation of an artificial-intelligence cloud-based platform to improve the shared decision-making process and outcomes in breast cancer patients proposed for locoregional treatment

Authors
Bonci, E; Kaidar-Person, O; Antunes, M; Ciani, O; Cruz, H; Di Micco, R; Gentilini, O; Gouveia, P; Heil, J; Kabata, P; Freitas, N; Gonçalves, T; Romariz, M; Martins, H; Mavioso, C; Mika, M; Pfob, A; Schinköthe, T; Silva, G; Cardoso, M;

Publication
European Journal of Surgical Oncology

Abstract

2024

The Impact of Process Automation on Employee Performance

Authors
Luz, MJ; da Fonseca, MJS; Garcia, JE; Andrade, JG;

Publication
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 6, WORLDCIST 2024

Abstract
Organizations aim to achieve operational efficiency capable of responding to high market competitiveness. The implementation of automation systems in organizational processes is a key factor in improving operational efficiency. This paper intends to contribute for a better understanding of the adoption of automation systems in organizations and analyze their impact on employee performance, considering the conditions under which they were implemented. The methodology for this study was qualitative research, in which semi-structured exploratory interviews conducted with employees from the Accounts Receivable department of automotive sector companies were carried out. The main goal was to understand their perception of the use of automation systems in their work tasks. The results of this research led to the conclusion that automation systems, even when underutilized, are beneficial in reducing repetitive and manual tasks. Nevertheless, the way in which they are implemented has a direct impact on the motivation of employees to use them.

2024

Energy and Circular Economy: Nexus beyond Concepts

Authors
Martins, FF; Castro, H; Smitková, M; Felgueiras, C; Caetano, N;

Publication
SUSTAINABILITY

Abstract
Energy and materials are increasingly important in industrialized countries, and they impact the economy, sustainability, and people's future. The purpose of this work was to study the relationship between energy and the circular economy using methods such as Pearson's correlation and a principal component analysis. Thus, 12 strong correlations were found, with 5 of them between the following relevant variables from two different subjects: the correlations of the raw material consumption, the domestic material consumption, and the material import dependency with the final energy consumption in transport (0.81, 0.92, and 0.81); the correlation of the circular material use rate with the final energy consumption in households (0.70); and the correlation of the material import dependency with the final energy consumption in industry (0.89). The time series forecast was only conclusive for the waste generated, showing that it will increase in the next 10 years.

  • 108
  • 4030