Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

CINDERELLA Clinical Trial (NCT05196269): Patient Engagement with an AI-based Healthcare Application for Enhancing Breast Cancer Locoregional Treatment Decisions- Preliminary Insights

Authors
Bonci, EA; Antunes, M; Bobowicz, M; Borsoi, L; Ciani, O; Cruz, HV; Di Micco, R; Ekman, M; Gentilini, O; Romariz, M; Gonçalves, T; Gouveia, P; Heil, J; Kabata, P; Kaidar Person, O; Martins, H; Mavioso, C; Mika, M; Oliveira, HP; Oprea, N; Pfob, A; Haik, J; Menes, T; Schinköthe, T; Silva, G; Cardoso, JS; Cardoso, MJ;

Publication
BREAST

Abstract

2025

Integrated Fleet Management of Mobile Robots for Enhancing Industrial Efficiency: A Case Study on Interoperability in Multi-Brand Environments Within the Automotive Sector

Authors
Lopes, D; Pereira, T; Gonçalves, A; Cunha, F; Lopes, F; Antunes, J; Santos, V; Coutinho, F; Barreiros, J; Duraes, J; Santos, P; Simoes, F; Ferreira, P; Freitas, EDCD; Trovao, JPF; Ferreira, JP; Ferreira, NMF;

Publication
APPLIED SCIENCES-BASEL

Abstract
This paper presents the development of fleet management software for mobile robots, including AGV and AMR technologies, within the scope of a case study from the GreenAuto project. The system was designed to integrate position and status data from different robots, unifying this information into a single map. To achieve this, a web-based platform was developed to allow the simultaneous, real-time visualization of all robots in operation. However, the main challenge of this research lies in the heterogeneity of the fleet, which comprises robots of different makes and models from various manufacturers, each using distinct data formats. The proposed approach addresses this by facilitating fleet monitoring and management, ensuring a greater efficiency and coordination in the robot movement. The results demonstrate that the platform improves the traceability and operational supervision, promoting the optimized management of mobile robots. It is concluded that the proposed solution contributes to industrial automation by providing an intuitive and centralized interface, enabling future expansions for new functionalities and the integration with other emerging technologies. The proposed system demonstrated efficiency in updating and supervising operations, with an average latency of 120 ms for task status updates and an interface refresh rate of less than 1 s, enabling near real-time supervision and facilitating operational decision-making.

2025

Towards Utilizing Robust Radiance Fields for 3D Reconstruction of Breast Aesthetics

Authors
Pinto, G; Zolfagharnasab, MH; Teixeira, LF; Cruz, H; Cardoso, MJ; Cardoso, JS;

Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings

Abstract
3D models are crucial in predicting aesthetic outcomes in breast reconstruction, supporting personalized surgical planning, and improving patient communication. In response to this necessity, this is the first application of Radiance Fields to 3D breast reconstruction. Building on this, the work compares six SoTA 3D reconstruction models. It introduces a novel variant tailored to medical contexts: Depth-Splatfacto, designed to improve denoising and geometric consistency through pseudo-depth supervision. Additionally, we extended model training to grayscale, which enhances robustness under grayscale-only input constraints. Experiments on a breast cancer patient dataset demonstrate that Splatfacto consistently outperforms others, delivering the highest reconstruction quality (PSNR 27.11, SSIM 0.942) and the fastest training times (×1.3 faster at 200k iterations). At the same time, the depth-enhanced variant offers an efficient and stable alternative with minimal fidelity loss. The grayscale train improves speed by ×1.6 with a PSNR drop of 0.70. Depth-Splatfacto further improves robustness, reducing PSNR variance by 10% and making images less blurry across test cases. These results establish a foundation for future clinical applications, supporting personalized surgical planning and improved patient-doctor communication. © 2025 Elsevier B.V., All rights reserved.

2025

An Educational Robotics Competition - The Robotics@ISEP Open Experience

Authors
Silva, MF; Dias, A; Guedes, P; Barbosa, R; Estrela, J; Moura, A; Cerqueira, V;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
There is a strong need to motivate students to learn science, technology, engineering, and mathematics (STEM) subjects. This is a problem not only at lower educational levels, but also at college institutions. With this idea in mind, the School of Engineering of the Porto Polytechnic (ISEP) Electrical Engineering Department decided, in 2021, to launch a robotics competition in order to foster students' interest in the areas of robotics and automation. This event, named Robotics@ISEP Open, aims to raise awareness of the area of electronics, computing, and robotics among students, involving them in the use of techniques and tools in this area, and encompasses three distinct robotics competitions covering both manipulator arms and mobile robots. It is based on two main points of interest: (i) robotic competitions and (ii) outside class training in robotics, aimed at students who want support to participate in competitions. Since its first edition, the event has grown and internationalized and has already become a milestone in the academic life of ISEP. This paper presents the motivations that led to the creation of this event, its main organizational aspects, and the competitions that are part of it, as well as some results gathered from the experience accumulated in organizing it.

2025

A Two-Stage U-Net Framework for Interactive Segmentation of Lung Nodules in CT Scans

Authors
Fernandes, L; Pereira, T; Oliveira, HP;

Publication
IEEE ACCESS

Abstract
Segmentation of lung nodules in CT images is an important step during the clinical evaluation of patients with lung cancer. Furthermore, early assessment of the cancer is crucial to increase the overall survival chances of patients with such disease, and the segmentation of lung nodules can help detect the cancer in its early stages. Consequently, there are many works in the literature that explore the use of neural networks for the segmentation of lung nodules. However, these frameworks tend to rely on accurate labelling of the nodule centre to then crop the input image. Although such works are able to achieve remarkable results, they do not take into account that the healthcare professional may fail to correctly label the centre of the nodule. Therefore, in this work, we propose a new framework based on the U-Net model that allows to correct such inaccuracies in an interactive fashion. It is composed of two U-Net models in cascade, where the first model is used to predict a rough estimation of the lung nodule location and the second model refines the generated segmentation mask. Our results show that the proposed framework is able to be more robust than the studied baselines. Furthermore, it is able to achieve state-of-the-art performance, reaching a Dice of 91.12% when trained and tested on the LIDC-IDRI public dataset.

2025

Leveraging Synthetic Data to Develop a Machine Learning Model for Voiding Flow Rate Prediction From Audio Signals

Authors
Alvarez, ML; Bahillo, A; Arjona, L; Nogueira, DM; Gomes, EF; Jorge, AM;

Publication
IEEE ACCESS

Abstract
Sound-based uroflowmetry (SU) is a non-invasive technique emerging as an alternative to traditional uroflowmetry (UF) to calculate the voiding flow rate based on the sound generated by the urine impacting the water in a toilet, enabling remote monitoring and reducing the patient burden and clinical costs. This study trains four different machine learning (ML) models (random forest, gradient boosting, support vector machine and convolutional neural network) using both regression and classification approaches to predict and categorize the voiding flow rate from sound events. The models were trained with a dataset that contains sounds from synthetic void events generated with a high precision peristaltic pump and a traditional toilet. Sound was simultaneously recorded with three devices: Ultramic384k, Mi A1 smartphone and Oppo Smartwatch. To extract the audio features, our analysis showed that segmenting the audio signals into 1000 ms segments with frequencies up to 16 kHz provided the best results. Results show that random forest achieved the best performance in both regression and classification tasks, with a mean absolute error (MAE) of 0.9, 0.7 and 0.9 ml/s and quadratic weighted kappa (QWK) of 0.99, 1.0 and 1.0 for the three devices. To evaluate the models in a real environment and assess the effectiveness of training with synthetic data, the best-performing models were retrained and validated using a real voiding sounds dataset. The results reported an MAE below 2.5 ml/s and a QWK above 0.86 for regression and classification tasks, respectively.

  • 114
  • 4281