2025
Authors
Frias, J; Romariz, M; Ferreira, R; Pereira, T; Oliveira, HP; Santinha, J; Pinto, D; Gouveia, P; Silva, LB; Costa, C;
Publication
UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION, UAHCI 2025, PT I
Abstract
Deep Inferior Epigastric Perforator (DIEP) flap breast reconstruction relies on the precise identification of perforator vessels supplying blood to transferred tissue. Traditional manual mapping from preoperative imaging is timeconsuming and subjective. To address this, AVA, a semi-automated perforator detection algorithm, was developed to analyze angiography images. AVA follows a three-step process: automated anatomical segmentation, manual annotation of perforators, and segmentation of perforator courses. This approach enhances accuracy, reduces subjectivity, and accelerates the mapping process while generating quantitative reports for surgical planning. To streamline integration into clinical workflows, AVA has been embedded into PACScenter, a medical imaging platform, leveraging DICOM encapsulation for seamless data exchange within a Vendor Neutral Archive (VNA). This integration allows surgeons to interactively annotate perforators, adjust parameters iteratively, and visualize detailed anatomical structures. AVA-PACScenter integration eliminates workflow disruptions by providing real-time perforator analysis within the surgical environment, ultimately improving preoperative planning and intraoperative guidance. Currently undergoing clinical feasibility testing, this integration aims to enhance DIEP flap reconstruction efficiency by reducing manual inputs, improving mapping precision, and facilitating long-term report storage within Dicoogle. By automating perforator analysis, AVA represents a significant advancement toward data-driven, patient-centered surgical planning.
2025
Authors
David Lima; Gil Sampaio;
Publication
2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Abstract
2025
Authors
Fábio Daniel Pacheco; André F. Pinto; José Maravalhas-Silva; Bruno M. Ferreira; Nuno A. Cruz;
Publication
OCEANS 2025 - Great Lakes
Abstract
2025
Authors
Ferreira, TD; Monteiro, C; Gonçalves, C; Frazao, O; Silva, NA;
Publication
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
Polarization-based fiber sensors rely on the dynamics of the Stokes vector at the output of the optical fiber to probe stimuli that induce polarization variations. However, these sensors often suffer from limitations in sensitivity, precision, and reproducibility. In this work, we address these challenges by incorporating concepts from the Mueller matrix formalism to enhance the capabilities of such sensors. Specifically, we measure the Mueller matrix in the polarization basis that describes how the polarization evolves inside the optical fiber. Leveraging this formalism, we configure the system as a precise sensor to detect deformations along the fiber. By utilizing the Fisher Information framework, we significantly improve accuracy and resolution, enabling the detection of subtle perturbations with greater precision. This study introduces a novel approach for precise polarization control and advanced fiber-based sensing applications.
2025
Authors
Andrade, C; Stathopoulos, S; Mourato, S; Yamasaki, N; Paschalidou, A; Bernardo, H; Papaloizou, L; Charalambidou, I; Achilleos, S; Psistaki, K; Sarris, E; Carvalho, F; Chaves, F;
Publication
CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH
Abstract
Students spend 30 % of their lives indoors; therefore, a healthy indoor air quality (IAQ) is crucial for their well-being and academic performance in Higher Education Institutions. This review highlights the interventions for improving Indoor Enviclassrooms considering climate change by discussing ventilation techniques, phytoremediation, and building features designed to improve noise levels, thermal comfort, lighting and to reduce odor. Awareness and literacy are enhanced through the student's engagement by offering real-time monitoring knowledge of Indoor Environmental Quality using inexpensive smart sensors combined with IoT technology. Eco-friendly strategies are also highlighted to promote sustainability.
2025
Authors
Sofia Gonçalves; Joana Vale Sousa; Margarida Gouveia; Maria Amaro; Hélder P. Oliveira; Tania Pereira;
Publication
2025 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.