2024
Authors
Abreu, R; Simao, E; Serôdio, C; Branco, F; Valente, A;
Publication
AI
Abstract
Background: The Internet of Things (IoT) has improved many aspects that have impacted the industry and the people's daily lives. To begin with, the IoT allows communication to be made across a wide range of devices, from household appliances to industrial machinery. This connectivity allows for a better integration of the pervasive computing, making devices smart and capable of interacting with each other and with the corresponding users in a sublime way. However, the widespread adoption of IoT devices has introduced some security challenges, because these devices usually run in environments that have limited resources. As IoT technology becomes more integrated into critical infrastructure and daily life, the need for stronger security measures will increase. These devices are exposed to a variety of cyber-attacks. This literature review synthesizes the current research of artificial intelligence (AI) technologies to improve IoT security. This review addresses key research questions, including: (1) What are the primary challenges and threats that IoT devices face?; (2) How can AI be used to improve IoT security?; (3) What AI techniques are currently being used for this purpose?; and (4) How does applying AI to IoT security differ from traditional methods? Methods: We included a total of 33 peer-reviewed studies published between 2020 and 2024, specifically in journal and conference papers written in English. Studies irrelevant to the use of AI for IoT security, duplicate studies, and articles without full-text access were excluded. The literature search was conducted using scientific databases, including MDPI, ScienceDirect, IEEE Xplore, and SpringerLink. Results were synthesized through a narrative synthesis approach, with the help of the Parsifal tool to organize and visualize key themes and trends. Results: We focus on the use of machine learning, deep learning, and federated learning, which are used for anomaly detection to identify and mitigate the security threats inherent to these devices. AI-driven technologies offer promising solutions for attack detection and predictive analysis, reducing the need for human intervention more significantly. This review acknowledges limitations such as the rapidly evolving nature of IoT technologies, the early-stage development or proprietary nature of many AI techniques, the variable performance of AI models in real-world applications, and potential biases in the search and selection of articles. The risk of bias in this systematic review is moderate. While the study selection and data collection processes are robust, the reliance on narrative synthesis and the limited exploration of potential biases in the selection process introduce some risk. Transparency in funding and conflict of interest reporting reduces bias in those areas. Discussion: The effectiveness of these AI-based approaches can vary depending on the performance of the model and the computational efficiency. In this article, we provide a comprehensive overview of existing AI models applied to IoT security, including machine learning (ML), deep learning (DL), and hybrid approaches. We also examine their role in enhancing the detection accuracy. Despite all the advances, challenges still remain in terms of data privacy and the scalability of AI solutions in IoT security. Conclusion: This review provides a comprehensive overview of ML applications to enhance IoT security. We also discuss and outline future directions, emphasizing the need for collaboration between interested parties and ongoing innovation to address the evolving threat landscape in IoT security.
2024
Authors
Ferreira, DR; Mendes, A; Ferreira, JF;
Publication
Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings, ICSE Companion 2024, Lisbon, Portugal, April 14-20, 2024
Abstract
Formal contracts and assertions are effective methods to enhance software quality by enforcing preconditions, postconditions, and invariants. However, the adoption and impact of contracts in the context of mobile application development, particularly of Android applications, remain unexplored. We present the first large-scale empirical study on the presence and use of contracts in Android applications, written in Java or Kotlin. We consider 2,390 applications and five categories of contract elements: conditional runtime exceptions, APIs, annotations, assertions, and other. We show that most contracts are annotation-based and are concentrated in a small number of applications. © 2024 IEEE Computer Society. All rights reserved.
2024
Authors
Pinto, J; Esteves, V; Tavares, S; Sousa, R;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE
Abstract
The power transformer is one of the key components of any electrical grid, and, as such, modern day industrialization activities require constant usage of the asset. This increases the possibility of failures and can potentially diminish the lifespan of a power transformer. Dissolved gas analysis (DGA) is a technique developed to quantify the existence of hydrocarbon gases in the content of the power transformer oil, which in turn can indicate the presence of faults. Since this process requires different chemical analysis for each type of gas, the overall cost of the operation increases with number of gases. Thus said, a machine learning methodology was defined to meet two simultaneous objectives, identify gas subsets, and predict the remaining gases, thus restoring them. Two subsets of equal or smaller size to those used by traditional methods (Duval's triangle, Roger's ratio, IEC table) were identified, while showing potentially superior performance. The models restored the discarded gases, and the restored set was compared with the original set in a variety of validation tasks.
2024
Authors
Pavão, J; Bastardo, R; da Rocha, NP;
Publication
Proceedings of the 10th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2024, Angers, France, April 28-30, 2024.
Abstract
This article aimed to analyse state-of-the-art empirical evidence of randomized controlled trials designed to assess preventive cognitive training interventions based on virtual reality for older adults without cognitive impairment, by identifying virtual reality setups and tasks, clinical outcomes and respective measurement instruments, and positive effects on outcome parameters. A systematic electronic search was performed, and six randomized controlled trials were included in the systematic review. In terms of results, the included studies pointed to significant positive impact of virtual reality-based cognitive training interventions on global cognition, memory, attention, information processing speed, walking variability, balance, muscle strength, and falls. However, further research is required to evaluate the adequacy of the virtual reality setups and tasks, to study the impact of the interventions’ duration and intensity, to understand how to tailor the interventions to the characteristics and needs of the individuals, and to compare face-to-face to remote interventions. © 2024 by SCITEPRESS – Science and Technology Publications, Lda.
2024
Authors
Padua, L; Chojka, A; Morais, R; Peres, E; Sousa, JJ;
Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE
Abstract
Accurate detection and differentiation of grapevine canopies from other vegetation, along with individual grapevine row identification, pose significant challenges in precision viticulture (PV), especially within irregularly structured vineyards shaped by natural terrain slopes. This study employs aerial imagery captured by unmanned aerial vehicles (UAVs) and introduces an image processing methodology that relies on the orthorectified raster data obtained through UAVs. The proposed method adopts a data-driven approach that combines visible indices and elevation data to achieve precise grapevine row detection. Thoroughly tested across various vineyard configurations, including irregular and terraced landscapes, the findings underscore the method's effectiveness in identifying grapevine rows of diverse shapes and configurations. This capability is crucial for accurate vineyard monitoring and management. Furthermore, the method enables clear differentiation between inter-row spaces and grapevine vegetation, representing a fundamental advancement for comprehensive vineyard analysis and PV planning. This study contributes to the field of PV by providing a reliable tool for grapevine row detection and vineyard feature classification. The proposed methodology is applicable to vineyards with varying layouts, offering a versatile solution for enhancing precision viticulture practices.
2024
Authors
Barradas, R; Lencastre, JA; Soares, SP; Valente, A;
Publication
ROBOTICS
Abstract
The present article explores the impact of educational robotics on fostering computational thinking and problem-solving skills in elementary school students through a problem-based learning approach. This study involved the creation of a framework which includes a robot and two eBooks designed for students and teachers. The eBooks serve as a guide to the construction and programming of a small Arduino-based robot. Through integration with gamification elements, the model features a narrative with three characters to boost a student's engagement and motivation. Through iteration of heuristic evaluations and practical tests, we refined the initial theoretical framework. An empirical study was conducted in two phases involving 350 students. The first empirical test involved a small group of 21 students, similar to end users, from five European schools. With a 100% completion rate for the tasks, 73.47% of these tasks were solved optimally. Later, we conducted a larger validation study which involved 329 students in a Portuguese school. This second phase of the study was conducted during the 2022-2023 and 2023-2024 school years with three study groups. The results led to a 91.13% success rate in problem-solving activities, and 56.99% of those students achieved optimal solutions. Advanced statistical techniques, including ANOVA, were applied to account for group differences and ensure the robustness of the findings. This study demonstrates that the proposed model which integrates educational robotics with problem-based learning effectively promotes computational thinking and problem-solving skills, which are essential for the 21st century. These findings support the inclusion of robotics into primary school curricula and provide a validated framework for educators.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.