2024
Authors
Cunha, A; Macedo, N; Campos, JC; Margolis, I; Sousa, E;
Publication
2024 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING EDUCATION AND TRAINING, ICSE-SEET 2024
Abstract
Background: Many progranunmg environments include automated feedback in the form of hints to help novices learn autonomously. Some experimental studies investigated the impact of automated liints in the immediate, performance and learning retention in that context. Automated feedback is also becoming a popular research topic in the context of formal specification languages, but so far no experimental studies have been conducted to assess its impact while learning such languages. Objective: We aim to investigate the impact of different types of automated hints while learning a formal specification language, not only in terms of immediate performance and learning retention, but also in the emotional response of the students. Method: We conducted a simple one-factor randomised experiment in 2 sessions involving 85 BSc students majoring in CSE. In the 1st session students were divided in 1 control group and 3 experimental groups, each receiving a different type of hint while learning to specify simple, requirements with the Alloy formal specification language. To assess the impact of hints on learning retention, in the 2nd session, 1 week later, students had no hints while formalising requirements. Before and after each session the students answered a standard self-reporting emotional survey to assess their emotional response to the experiment. Results: Of the 3 types of hints considered, only those pointing to the precise location of an error had a positive impact on the immediate performance and none had significant impact in learning retention. Hint availability also causes a significant impact on the emotional response, but no significant emotional :impact exists once hints are no longer available (i.e. no deprivation effects were detected). Conclusion: Although none of the evaluated hints had an impact on learning retention, learning a formal specification language with an environment that provides hints with precise error locations seems to contribute to a better overall experience without apparent drawbacks. Further studies are needed to investigate if other kind of feedback, namely hints combined with some sort of self explanation prompts, can have a positive impact in learning retention.
2024
Authors
Araújo, TA; Campos, J; Ferreira, MC; Fernandes, CS;
Publication
International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings
Abstract
Objective: The study aimed to demonstrate the development of a mobile app prototype, BarrierBeGone, a system that identifies potential barriers for individuals with mobility disabilities and promotes accessibility using gamification strategies. The main goal is to raise awareness about mobility and accessibility difficulties, especially for wheelchair users, and to promote more responsible behaviours. Method: The User-Centred Design methodology was employed, going through three phases: requirements gathering, design and development, and evaluation. Additionally, interviews with five individuals with mobility disabilities helped define the initial system requirements. The development of the barrier identification system was followed by usability tests with nine representative users. Results: The results of the usability tests of the "BarrierBeGone" barrier identification system were extremely positive. Stakeholders recognized the utility and simplicity of the platform, considering it a motivating factor for future use. Conclusion: The results support the effectiveness of the proposed educational tool in increasing awareness about accessibility and social inclusion in smart cities. This study makes a significant contribution to the field of urban planning and inclusive design. © 2024 by SCITEPRESS – Science and Technology Publications, Lda.
2024
Authors
Cerqueira, V; Moniz, N; Inácio, R; Soares, C;
Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II
Abstract
Recent state-of-the-art forecasting methods are trained on collections of time series. These methods, often referred to as global models, can capture common patterns in different time series to improve their generalization performance. However, they require large amounts of data that might not be available. Moreover, global models may fail to capture relevant patterns unique to a particular time series. In these cases, data augmentation can be useful to increase the sample size of time series datasets. The main contribution of this work is a novel method for generating univariate time series synthetic samples. Our approach stems from the insight that the observations concerning a particular time series of interest represent only a small fraction of all observations. In this context, we frame the problem of training a forecasting model as an imbalanced learning task. Oversampling strategies are popular approaches used to handle the imbalance problem in machine learning. We use these techniques to create synthetic time series observations and improve the accuracy of forecasting models. We carried out experiments using 7 different databases that contain a total of 5502 univariate time series. We found that the proposed solution outperforms both a global and a local model, thus providing a better trade-off between these two approaches. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Authors
Pereira, MI; Pinto, AM;
Publication
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Abstract
Autonomous Surface Vehicles (ASVs) are bound to play a fundamental role in the maintenance of offshore wind farms. Robust navigation for inspection vehicles should take into account the operation of docking within a harbouring structure, which is a critical and still unexplored maneuver. This work proposes an end-to-end docking approach for ASVs, based on Reinforcement Learning (RL), which teaches an agent to tackle collision- free navigation towards a target pose that allows the berthing of the vessel. The developed research presents a methodology that introduces the concept of illegal actions to facilitate the vessel's exploration during the learning process. This method improves the adopted Actor-Critic (AC) framework by accelerating the agent's optimization by approximately 38.02%. A set of comprehensive experiments demonstrate the accuracy and robustness of the presented method in scenarios with simulated environmental constraints (Beaufort Scale and Douglas Sea Scale), and a diversity of docking structures. Validation with two different real ASVs in both controlled and real environments demonstrates the ability of this method to enable safe docking maneuvers without prior knowledge of the scenario.
2024
Authors
Rodrigues, C; Correia, M; Abrantes, J; Rodrigues, M; Nadal, J;
Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
This study presents variability assessment of real time measurements from in-vivo internal joint loads with instrumented implant during post-operative (PO) recovery process from total hip arthroplasty on daily living gait activities. A total of 112 trials walking supported by crutches in both hands, contralateral and ipsilateral sides, walking on treadmill at constant velocities, accelerating, decelerating and free walking, were assessed from 9 different patients ranging 0.3 to 76-month PO. Variability was assessed based on standard deviation of the vertical joint load normalized to each subject body weight with this metric adequacy to monitor PO recover.
2024
Authors
Paulino, D; Netto, AT; Brito, WAT; Paredes, H;
Publication
ENG
Abstract
The current surge in the deployment of web applications underscores the need to consider users' individual preferences in order to enhance their experience. In response to this, an innovative approach is emerging that focuses on the detailed analysis of interaction data captured by web browsers. These data, which includes metrics such as the number of mouse clicks, keystrokes, and navigation patterns, offer insights into user behavior and preferences. By leveraging this information, developers can achieve a higher degree of personalization in web applications, particularly in the context of interactive elements such as online games. This paper presents the WebTraceSense project, which aims to pioneer this approach by developing a framework that encompasses a backend and frontend, advanced visualization modules, a DevOps cycle, and the integration of AI and statistical methods. The backend of this framework will be responsible for securely collecting, storing, and processing vast amounts of interaction data from various websites. The frontend will provide a user-friendly interface that allows developers to easily access and utilize the platform's capabilities. One of the key components of this framework is the visualization modules, which will enable developers to monitor, analyze, and interpret user interactions in real time, facilitating more informed decisions about user interface design and functionality. Furthermore, the WebTraceSense framework incorporates a DevOps cycle to ensure continuous integration and delivery, thereby promoting agile development practices and enhancing the overall efficiency of the development process. Moreover, the integration of AI methods and statistical techniques will be a cornerstone of this framework. By applying machine learning algorithms and statistical analysis, the platform will not only personalize user experiences based on historical interaction data but also infer new user behaviors and predict future preferences. In order to validate the proposed components, a case study was conducted which demonstrated the usefulness of the WebTraceSense framework in the creation of visualizations based on an existing dataset.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.