2025
Authors
Kazemi-Robati, E; Varotto, S; Silva, B; Temiz, I;
Publication
APPLIED ENERGY
Abstract
With the recent advancements in the development of hybrid offshore parks and the expected large-scale implementation of them in the near future, it becomes paramount to investigate proper energy management strategies to improve the integrability of these parks into the power systems. This paper addresses a multiobjective energy management approach using a hybrid energy storage system comprising batteries and hydrogen/fuel-cell systems applied to multi-source wind-wave and wind-solar offshore parks to maximize the delivered energy while minimizing the variations of the power output. To find the solution of the optimization problem defined for energy management, a strategy is proposed based on the examination of a set of weighting factors to form the Pareto front while the problem associated with each of them is assessed in a mixed-integer linear programming framework. Subsequently, fuzzy decision making is applied to select the final solution among the ones existing in the Pareto front. The studies are implemented in different locations considering scenarios for electrical system limitation and the place of the storage units. According to the results, applying the proposed multiobjective framework successfully addresses the enhancement of energy delivery and the decrease in power output fluctuations in the hybrid offshore parks across all scenarios of electrical system limitation and combinational storage locations. Based on the results, in addition to the increase in delivered energy, a decrease in power variations by around 40 % up to over 80 % is observed in the studied cases.
2025
Authors
Barros, A; Neto, H; Cunha, A; Macedo, N; Paiva, ACR;
Publication
FORMAL METHODS, PT II, FM 2024
Abstract
Platforms to support novices learning to program are often accompanied by automated next-step hints that guide them towards correct solutions. Many of those approaches are data-driven, building on historical data to generate higher quality hints. Formal specifications are increasingly relevant in software engineering activities, but very little support exists to help novices while learning. Alloy is a formal specification language often used in courses on formal software development methods, and a platform-Alloy4Fun-has been proposed to support autonomous learning. While non-data-driven specification repair techniques have been proposed for Alloy that could be leveraged to generate next-step hints, no data-driven hint generation approach has been proposed so far. This paper presents the first data-driven hint generation technique for Alloy and its implementation as an extension to Alloy4Fun, being based on the data collected by that platform. This historical data is processed into graphs that capture past students' progress while solving specification challenges. Hint generation can be customized with policies that take into consideration diverse factors, such as the popularity of paths in those graphs successfully traversed by previous students. Our evaluation shows that the performance of this new technique is competitive with non-data-driven repair techniques. To assess the quality of the hints, and help select the most appropriate hint generation policy, we conducted a survey with experienced Alloy instructors.
2025
Authors
Cunha, J; Madeira, A; Barbosa, LS;
Publication
SCIENCE OF COMPUTER PROGRAMMING
Abstract
The need for more flexible and robust models to reason about systems in the presence of conflicting information is becoming more and more relevant in different contexts. This has prompted the introduction of paraconsistent transition systems, where transitions are characterized by two pairs of weights: one representing the evidence that the transition effectively occurs and the other its absence. Such a pair of weights can express scenarios of vagueness and inconsistency. . This paper establishes a foundation for a compositional and structured specification approach of paraconsistent transition systems, framed as paraconsistent institution. . The proposed methodology follows the stepwise implementation process outlined by Sannella and Tarlecki.
2025
Authors
Sousa, J; Sousa, A; Brueckner, F; Reis, LP; Reis, A;
Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING
Abstract
Directed Energy Deposition (DED) is a free-form metal additive manufacturing process characterized as toolless, flexible, and energy-efficient compared to traditional processes. However, it is a complex system with a highly dynamic nature that presents challenges for modeling and optimization due to its multiphysics and multiscale characteristics. Additionally, multiple factors such as different machine setups and materials require extensive testing through single-track depositions, which can be time and resource-intensive. Single-track experiments are the foundation for establishing optimal initial parameters and comprehensively characterizing bead geometry, ensuring the accuracy and efficiency of computer-aided design and process quality validation. We digitized a DED setup using the Robot Operating System (ROS 2) and employed a thermal camera for real-time monitoring and evaluation to streamline the experimentation process. With the laser power and velocity as inputs, we optimized the dimensions and stability of the melt pool and evaluated different objective functions and approaches using a Response Surface Model (RSM). The three-objective approach achieved better rewards in all iterations and, when implemented in areal setup, allowed to reduce the number of experiments and shorten setup time. Our approach can minimize waste, increase the quality and reliability of DED, and enhance and simplify human-process interaction by leveraging the collaboration between human knowledge and model predictions.
2025
Authors
Kuroishi, PH; Paiva, ACR; Maldonado, JC; Vincenzi, AMR;
Publication
INFORMATION AND SOFTWARE TECHNOLOGY
Abstract
Context: Testing activities are essential for the quality assurance of mobile applications under development. Despite its importance, some studies show that testing is not widely applied in mobile applications. Some characteristics of mobile devices and a varied market of mobile devices with different operating system versions lead to a highly fragmented mobile ecosystem. Thus, researchers put some effort into proposing different solutions to optimize mobile application testing. Objective: The main goal of this paper is to provide a categorization and classification of existing testing infrastructures to support mobile application testing. Methods: To this aim, the study provides a Systematic Mapping Study of 27 existing primary studies. Results: We present a new classification and categorization of existing types of testing infrastructure, the types of supported devices and operating systems, whether the testing infrastructure is available for usage or experimentation, and supported testing types and applications. Conclusion: Our findings show a need for mobile testing infrastructures that support multiple phases of the testing process. Moreover, we showed a need for testing infrastructure for context-aware applications and support for both emulators and real devices. Finally, we pinpoint the need to make the research available to the community whenever possible.
2025
Authors
Sales Mendes, A; Lozano Murciego, Á; Silva, LA; Jiménez Bravo, M; Navarro Cáceres, M; Bernardes, G;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
Monodic folk music has traditionally been preserved in physical documents. It constitutes a vast archive that needs to be digitized to facilitate comprehensive analysis using AI techniques. A critical component of music score digitization is the transcription of lyrics, an extensively researched process in Optical Character Recognition (OCR) and document layout analysis. These fields typically require the development of specific models that operate in several stages: first, to detect the bounding boxes of specific texts, then to identify the language, and finally, to recognize the characters. Recent advances in vision language models (VLMs) have introduced multimodal capabilities, such as processing images and text, which are competitive with traditional OCR methods. This paper proposes an end-to-end system for extracting lyrics from images of handwritten musical scores. We aim to evaluate the performance of two state-of-the-art VLMs to determine whether they can eliminate the need to develop specialized text recognition and OCR models for this task. The results of the study, obtained from a dataset in a real-world application environment, are presented along with promising new research directions in the field. This progress contributes to preserving cultural heritage and opens up new possibilities for global analysis and research in folk music. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.