Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Uncovering Manipulated Files Using Mathematical Natural Laws

Authors
Fernandes, P; Ciardhuáin, SO; Antunes, M;

Publication
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I

Abstract
The data exchange between different sectors of society has led to the development of electronic documents supported by different reading formats, namely portable PDF format. These documents have characteristics similar to those used in programming languages, allowing the incorporation of potentially malicious code, which makes them a vector for cyberattacks. Thus, detecting anomalies in digital documents, such as PDF files, has become crucial in several domains, such as finance, digital forensic analysis and law enforcement. Currently, detection methods are mostly based on machine learning and are characterised by being complex, slow and mainly inefficient in detecting zero-day attacks. This paper aims to propose a Benford Law (BL) based model to uncover manipulated PDF documents by analysing potential anomalies in the first digit extracted from the PDF document's characteristics. The proposed model was evaluated using the CIC Evasive PDFMAL-2022 dataset, consisting of 1191 documents (278 benign and 918 malicious). To classify the PDF documents, based on BL, into malicious or benign documents, three statistical models were used in conjunction with the mean absolute deviation: the parametric Pearson and the non-parametric Spearman and Cramer-Von Mises models. The results show a maximum F1 score of 87.63% in detecting malicious documents using Pearson's model, demonstrating the suitability and effectiveness of applying Benford's Law in detecting anomalies in digital documents to maintain the accuracy and integrity of information and promoting trust in systems and institutions.

2024

A Machine Learning App for Monitoring Physical Therapy at Home

Authors
Pereira, B; Cunha, B; Viana, P; Lopes, M; Melo, ASC; Sousa, ASP;

Publication
SENSORS

Abstract
Shoulder rehabilitation is a process that requires physical therapy sessions to recover the mobility of the affected limbs. However, these sessions are often limited by the availability and cost of specialized technicians, as well as the patient's travel to the session locations. This paper presents a novel smartphone-based approach using a pose estimation algorithm to evaluate the quality of the movements and provide feedback, allowing patients to perform autonomous recovery sessions. This paper reviews the state of the art in wearable devices and camera-based systems for human body detection and rehabilitation support and describes the system developed, which uses MediaPipe to extract the coordinates of 33 key points on the patient's body and compares them with reference videos made by professional physiotherapists using cosine similarity and dynamic time warping. This paper also presents a clinical study that uses QTM, an optoelectronic system for motion capture, to validate the methods used by the smartphone application. The results show that there are statistically significant differences between the three methods for different exercises, highlighting the importance of selecting an appropriate method for specific exercises. This paper discusses the implications and limitations of the findings and suggests directions for future research.

2024

Evaluating the Effectiveness of Time Series Transformers for Demand Forecasting in Retail

Authors
Oliveira, JM; Ramos, P;

Publication
MATHEMATICS

Abstract
This study investigates the effectiveness of Transformer-based models for retail demand forecasting. We evaluated vanilla Transformer, Informer, Autoformer, PatchTST, and temporal fusion Transformer (TFT) against traditional baselines like AutoARIMA and AutoETS. Model performance was assessed using mean absolute scaled error (MASE) and weighted quantile loss (WQL). The M5 competition dataset, comprising 30,490 time series from 10 stores, served as the evaluation benchmark. The results demonstrate that Transformer-based models significantly outperform traditional baselines, with Transformer, Informer, and TFT leading the performance metrics. These models achieved MASE improvements of 26% to 29% and WQL reductions of up to 34% compared to the seasonal Na & iuml;ve method, particularly excelling in short-term forecasts. While Autoformer and PatchTST also surpassed traditional methods, their performance was slightly lower, indicating the potential for further tuning. Additionally, this study highlights a trade-off between model complexity and computational efficiency, with Transformer models, though computationally intensive, offering superior forecasting accuracy compared to the significantly slower traditional models like AutoARIMA. These findings underscore the potential of Transformer-based approaches for enhancing retail demand forecasting, provided the computational demands are managed effectively.

2024

Wave-motion compensation for USV–UAV cooperation: A model predictive controller approach

Authors
Martins, J; Pereira, P; Campilho, R; Pinto, A;

Publication
MESA 2024 - 20th International Conference on Mechatronic, Embedded Systems and Applications, Proceedings

Abstract
Due to the difficult access to the maritime environment, cooperation between different robotic platforms operating in different domains provides numerous advantages when considering Operations and Maintenance (O&M) missions. The nest Uncrewed Surface Vehicle (USV) is equipped with a parallel platform, serving as a landing pad for Uncrewed Aerial Vehicle (UAV) landings in dynamic sea states. This work proposes a methodology for short term forecasting of wave-behaviour using Fast Fourier Transforms (FFT) and a low-pass Butterworth filter to filter out noise readings from the Inertial Measurement Unit (IMU) and applying an Auto-Regressive (AR) model for the forecast, showing good results within an almost 10-second window. These predictions are then used in a Model Predictive Control (MPC) approach to optimize trajectory planning of the landing pad roll and pitch, in order to increase horizontality, consistently mitigating around 80% of the wave induced motion. ©2024 IEEE.

2024

Optimization strategies in SEI: An analysis of SARIMA and additive Holt-Winters models

Authors
Cristino, C; Nicola, S; Costa, J; Bettencourt, N; Madureira, A; Pereira, I; Costa, A;

Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
This paper focuses on the importance of Business Intelligence (BI) tools in the business context and the urgent need for more effective implementation of time series forecasting models in these resources. It shows the utility and applicability of Sage Enterprise Intelligence (SEI), an integrated BI tool in Enterprise Resource Planning (ERP) Sage, by illustrating how it enhances data analysis and decision-making processes. Additionally, a study will show the application of time series forecasting models: Seasonal AutoRegressive Integrated Moving Average (SARIMA) and additive Holt-Winters to the sales value of a fuel sector company. The research was conducted through a case study in which sales data were collected from 2016 to 2023. The results indicate that neither of the two models exceeded the sales figures reflecting the company's market position. In this case study, both models performed well, with the residuals verifying the assumptions. However, the additive Holt-Winters model had lower errors, which is why it was selected for the final step: forecasting 12 months.

2024

Painless Artificial Intelligence Point-of-Care hemogram diagnosis in Companion Animals

Authors
Barroso, TG; Costa, JM; Gregório, AH; Martins, RC;

Publication

Abstract
Quantification of erythrocytes and leukocytes is an essential aspect of hemogram diagno- 23 sis in Veterinary Medicine. Flow cytometry analysis, laser scattering, and impedance detection are 24 standard laboratory techniques, verified by manual microscopy counting. Although single-cell scat- 25 tering is already used as a standard technology for differentiating cell counts in flow cytometry, it 26 requires capillary cell separation. The current study investigates the scattering characteristics of 27 whole blood to identify correlations with erythrocytes and leukocytes counts. The scattering infor- 28 mation present in blood samples can be classified into three types: i) geometrical scattering, which 29 occurs when non-absorbed light is reflected and scattered, ii) Mie scattering, which happens when 30 light is scattered by particles of a similar size to the wavelength, and iii) Rayleigh scattering, which occurs when light is scattered by particles that are smaller than the incident light wavelength. In 32 this study, we investigate the scattering correction coefficients of dog blood absorption spectra in 33 the visible-near infrared range, to establish direct correlations with erythrocytes and leukocytes 34 counts, using multivariate linear regression. Our findings demonstrate the possibility of using the 35 scattering properties of dog blood, which is a step towards the existence of a portable and miniatur- 36 ized hemogram diagnosis in Veterinary Clinics worldwide.

  • 56
  • 3957