2024
Authors
Faria, JP; Verbeek, F; Fasolino, AR;
Publication
ACM SIGSOFT Softw. Eng. Notes
Abstract
2024
Authors
Serôdio, C; Mestre, P; Cabral, J; Gomes, M; Branco, F;
Publication
APPLIED SCIENCES-BASEL
Abstract
In the context of Industry 4.0, this paper explores the vital role of advanced technologies, including Cyber-Physical Systems (CPS), Big Data, Internet of Things (IoT), digital twins, and Artificial Intelligence (AI), in enhancing data valorization and management within industries. These technologies are integral to addressing the challenges of producing highly customized products in mass, necessitating the complete digitization and integration of information technology (IT) and operational technology (OT) for flexible and automated manufacturing processes. The paper emphasizes the importance of interoperability through Service-Oriented Architectures (SOA), Manufacturing-as-a-Service (MaaS), and Resource-as-a-Service (RaaS) to achieve seamless integration across systems, which is critical for the Industry 4.0 vision of a fully interconnected, autonomous industry. Furthermore, it discusses the evolution towards Supply Chain 4.0, highlighting the need for Transportation Management Systems (TMS) enhanced by GPS and real-time data for efficient logistics. A guideline for implementing CPS within Industry 4.0 environments is provided, focusing on a case study of real-time data acquisition from logistics vehicles using CPS devices. The study proposes a CPS architecture and a generic platform for asset tracking to address integration challenges efficiently and facilitate the easy incorporation of new components and applications. Preliminary tests indicate the platform's real-time performance is satisfactory, with negligible delay under test conditions, showcasing its potential for logistics applications and beyond.
2024
Authors
Carvalho, J; Leite, PN; Mina, J; Pinho, L; Gonçalves, EP; Pinto, AM;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Marine growth impacts the stability and integrity of offshore structures, while simultaneously preventing inspection procedures. In consequence, companies need to employ specialists that manually assess each impacted part of the structure. Due to harsh sub-sea environments, acquiring large quantities of quality underwater data becomes difficult. To mitigate these challenges a new data augmentation algorithm is proposed that generates new images by performing localized crops on regions of interest from the original data, expanding the total size of the dataset approximately 6 times. This research also proposes a learning-based algorithm capable of automatically delineating marine growth in underwater images, achieving up to 0.389 IoU and 0.508 Dice Loss. Advances in this area contribute for reducing the manual labour necessary to schedule maintenance operations in man-made submerged structures, while increasing the reliability and automation of the process.
2024
Authors
Coelho, R; Sequeira, A; Santos, LP;
Publication
QUANTUM MACHINE INTELLIGENCE
Abstract
Reinforcement learning (RL) consists of designing agents that make intelligent decisions without human supervision. When used alongside function approximators such as Neural Networks (NNs), RL is capable of solving extremely complex problems. Deep Q-Learning, a RL algorithm that uses Deep NNs, has been shown to achieve super-human performance in game-related tasks. Nonetheless, it is also possible to use Variational Quantum Circuits (VQCs) as function approximators in RL algorithms. This work empirically studies the performance and trainability of such VQC-based Deep Q-Learning models in classic control benchmark environments. More specifically, we research how data re-uploading affects both these metrics. We show that the magnitude and the variance of the model's gradients remain substantial throughout training even as the number of qubits increases. In fact, both increase considerably in the training's early stages, when the agent needs to learn the most. They decrease later in the training, when the agent should have done most of the learning and started converging to a policy. Thus, even if the probability of being initialized in a Barren Plateau increases exponentially with system size for Hardware-Efficient ansatzes, these results indicate that the VQC-based Deep Q-Learning models may still be able to find large gradients throughout training, allowing for learning.
2024
Authors
Zolfagharnasab, MH; Freitas, N; Gonçalves, T; Bonci, E; Mavioso, C; Cardoso, MJ; Oliveira, HP; Cardoso, JS;
Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
Abstract
Breast cancer treatments often affect patients’ body image, making aesthetic outcome predictions vital. This study introduces a Deep Learning (DL) multimodal retrieval pipeline using a dataset of 2,193 instances combining clinical attributes and RGB images of patients’ upper torsos. We evaluate four retrieval techniques: Weighted Euclidean Distance (WED) with various configurations and shallow Artificial Neural Network (ANN) for tabular data, pre-trained and fine-tuned Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), and a multimodal approach combining both data types. The dataset, categorised into Excellent/Good and Fair/Poor outcomes, is organised into over 20K triplets for training and testing. Results show fine-tuned multimodal ViTs notably enhance performance, achieving up to 73.85% accuracy and 80.62% Adjusted Discounted Cumulative Gain (ADCG). This framework not only aids in managing patient expectations by retrieving the most relevant post-surgical images but also promises broad applications in medical image analysis and retrieval. The main contributions of this paper are the development of a multimodal retrieval system for breast cancer patients based on post-surgery aesthetic outcome and the evaluation of different models on a new dataset annotated by clinicians for image retrieval. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Authors
de Sousa, JM; Almeida, F;
Publication
INTERNATIONAL JOURNAL OF INNOVATION SCIENCE
Abstract
PurposeThis study aims to identify and explore the factors affecting social entrepreneurial intentions considering an educational institution in Portugal. It also intends to determine the relevance of moderating factors in the antecedents and entrepreneurial intention of these students. Design/methodology/approachA panel of 177 undergraduate students enrolled in a social entrepreneurship course between the academic years 2018 and 2021 is considered. The data is explored quantitatively considering descriptive analysis techniques, correlational analysis and hypothesis testing. FindingsThe findings reveal that entrepreneurial intention depends on multiple individual, organizational and contextual dimensions. Students' entrepreneurial intention remains unchanged regardless of the student's profile. However, students' professional experience is a more relevant factor for the identification of organizational dimensions related to curriculum and critical pedagogy, while previous involvement in volunteer activities contributes to a higher prevalence of individual factors. Originality/valueTo the best of the authors' knowledge, this study is original in exploring the role of entrepreneurial intention and its antecedents considering a heterogeneous students' profile. It offers theoretical and practical contributions by extending the literature on social entrepreneurial intention that can be used by higher education institutions to offer specific training more focused on the student's profile.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.