2024
Authors
Neves Moreira, F; Amorim, P;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS
Abstract
Omnichannel retailers are reinventing stores to meet the growing demand of the online channel. Several retailers now use stores as supporting distribution centers to offer quicker Buy-Online-Pickup-In-Store (BOPS) and Ship-From-Store (SFS) services. They resort to in-store picking to serve online orders using existing assets. However, in-store picking operations require picker carts traveling through store aisles, competing for store space, and possibly harming the offline customer experience. To learn picking policies that acknowledge interactions between pickers and offline customers, we formalize a new problem called Dynamic In-store Picker Routing Problem (diPRP). This problem considers a picker that tries to pick online orders (seeking) while minimizing customer encounters (hiding) - preserving the offline customer experience. We model the problem as a Markov Decision Process (MDP) and solve it using a hybrid solution approach comprising mathematical programming and reinforcement learning components. Computational experiments on synthetic instances suggest that the algorithm converges to efficient policies. We apply our solution approach in the context of a large European retailer to assess the proposed policies regarding the number of orders picked and customers encountered. The learned policies are also tested in six different retail settings, demonstrating the flexibility of the proposed approach. Our work suggests that retailers should be able to scale the in-store picking of online orders without jeopardizing the experience of offline customers. The policies learned using the proposed solution approach reduced the number of customer encounters by up to 50%, compared to policies solely focused on picking orders. Thus, to pursue omnichannel strategies that adequately trade-off operational efficiency and customer experience, retailers cannot rely on actual simplistic picking strategies, such as choosing the shortest possible route.
2024
Authors
Pereira, R; Almeida, C; Soares, E; Silva, P; Matias, B; Ferreira, A; Sytnyk, D; Machado, D; Martins, P; Martins, A; Almeida, J;
Publication
OCEANS 2024 - SINGAPORE
Abstract
This paper underscores the critical role of evolving tools for underwater search and rescue. Successful submarine crew rescue hinges on detecting, locating, and obtaining detailed information about the submerged vessel. Robotic systems, particularly ROVs and AUVs, emerge as invaluable tools, offering swift deployment times compared to manned submersibles. This study presents findings from Submarine Escape and Rescue (SMER) field trials conducted during the REPMUS 2023 naval military exercise off the west coast of Portugal, showcasing the effectiveness of these tools in real-world emergency situations. An initial multibeam sonar search from the surface with the Mar Porfundo ship was performed, followed by a close detailed inspection and visual survey with the EVA AUV of a target military submarine (NRP Arp (a) over tildeo) stationed on the sea bottom.
2024
Authors
Ndawula, MB; Djokic, SZ; Kisuule, M; Gu, CH; Hernando-Gil, I;
Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
Reliability analysis of large power networks requires accurate aggregate models of low voltage (LV) networks to allow for reasonable calculation complexity and to prevent long computational times. However, commonly used lumped load models neglect the differences in spatial distribution of demand, type of phase-connection of served customers and implemented protection system components (e.g., single-pole vs three-pole). This paper proposes a novel use of state enumeration (SE) and Monte Carlo simulation (MCS) techniques to formulate more accurate LV network reliability equivalents. The combined SE and MCS method is illustrated using a generic suburban LV test network, which is realistically represented by a reduced number of system states. This approach allows for a much faster and more accurate reliability assessments, where further reduction of system states results in a single-component equivalent reliability model with the same unavailability as the original LV network. Both mean values and probability distributions of standard reliability indices are calculated, where errors associated with the use of single-line models, as opposed to more detailed three-phase models, are quantified.
2024
Authors
Osipovskaya, E; Coelho, A; Tasi, P;
Publication
EDULEARN Proceedings - EDULEARN24 Proceedings
Abstract
2024
Authors
Alves, S; Kesner, D; Ramos, M;
Publication
Programming Languages and Systems - 22nd Asian Symposium, APLAS 2024, Kyoto, Japan, October 22-24, 2024, Proceedings
Abstract
We show how (well-established) type systems based on non-idempotent intersection types can be extended to characterize termination properties of functional programming languages with pattern matching features. To model such programming languages, we use a (weak and closed) ?-calculus integrating a pattern matching mechanism on algebraic data types (ADTs). Remarkably, we also show that this language not only encodes Plotkin’s CBV and CBN ?-calculus as well as other subsuming frameworks, such as the bang-calculus, but can also be used to interpret the semantics of effectful languages with exceptions. After a thorough study of the untyped language, we introduce a type system based on intersection types, and we show through purely logical methods that the set of terminating terms of the language corresponds exactly to that of well-typed terms. Moreover, by considering non-idempotent intersection types, this characterization turns out to be quantitative, i.e. the size of the type derivation of a term t gives an upper bound for the number of evaluation steps from t to its normal form. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
2024
Authors
Lopes, MS; Moreira, AP; Silva, MF; Santos, F;
Publication
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 2, CLAWAR 2023
Abstract
Quadruped robots have gained significant attention in the robotics world due to their capability to traverse unstructured terrains, making them advantageous in search and rescue and surveillance operations. However, their utility is substantially restricted in situations where object manipulation is necessary. A potential solution is to integrate a robotic arm, although this can be challenging since the arm's addition may unbalance the whole system, affecting the quadruped locomotion. To address this issue, the robotic arm must be adapted to the quadruped robot, which is not viable with commercially available products. This paper details the design and development of a robotic arm that has been specifically built to integrate with a quadruped robot to use in a variety of agricultural and industrial applications. The design of the arm, including its physical model and kinematic configuration, is presented. To assess the effectiveness of the prototype, a simulation was conducted with a motion-planning algorithm based on the arm's inverse kinematics. The simulation results confirm the system's stability and the functionality of the robotic arm's movement.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.