2024
Authors
Monteiro, AT; Arenas-Castro, S; Punalekar, SM; Cunha, M; Mendes, I; Giamberini, M; da Costa, EM; Fava, F; Lucas, R;
Publication
ECOLOGICAL INDICATORS
Abstract
The satellite monitoring of vegetation moisture content (VMC) and soil moisture content (SMC) in Southern European Atlantic mountains remains poorly understood but is a fundamental tool to better manage landscape moisture dynamics under climate change. In the Atlantic humid mountains of Portugal, we investigated an empirical model incorporating satellite (Sentinel-1 radar, S1; Sentinel-2 optical, S2) and ancillary predictors (topography and vegetation cover type) to monitor VMC (%) and SMC (%). Predictors derived from the S1 (VV, HH and VV/HH) and S2 (NDVI and NDMI) are compared to field measurements of VMC (n = 48) and SMC (n = 48) obtained during the early, mid and end of summer. Linear regression modelling was applied to uncover the feasibility of a landscape model for VMC and SMC, the role of vegetation type models (i.e. native forest, grasslands and shrubland) to enhance predictive capacity and the seasonal variation in the relationships between satellite predictors and VMC and SMC. Results revealed a significant but weak relationship between VMC and predictors at landscape level (R2 = 0.30, RMSEcv = 69.9 %) with S2_NDMI and vegetation cover type being the only significant predictors. The relationship improves in vegetation type models for grasslands (R2 = 0.35, RMSEcv = 95.0 % with S2_NDVI) and shrublands conditions (R2 = 0.52, RMSEcv = 45.3 %). A model incorporating S2_NDVI and S1_VV explained 52 % of the variation in VMC in shrublands. The relationship between SMC and satellite predictors at the landscape level was also weak, with only the S2_NDMI and vegetation cover type exhibiting a significant relationship (R2 = 0.28, RMSEcv = 18.9 %). Vegetation type models found significant associations with SMC only in shrublands (R2 = 0.31, RMSEcv = 9.03 %) based on the S2_NDMI and S1_VV/VH ratio. The seasonal analysis revealed however that predictors associated to VMC and SMC may vary over the summer. The relationships with VMC were stronger in the early summer (R2 = 0.31, RMSEcv = 90.1 %; based on S2_NDMI) and mid (R2 = 0.37, RMSEcv = 70.8 %; based on S2_NDVI), butnon-significant in the end of summer. Similar pattern was found for SMC, where the link with predictors decreases from the early summer (R2 = 0.33, RMSEcv = 16.0 %; based on S1_VH) and mid summer (R2 = 0.30, RMSEcv = 17.8 %; based on S2_NDMI) to the end of summer (non-significant). Overall, the hypothesis of a universal landscape model for VMC and SMC was not fully supported. Vegetation type models showed promise, particularly for VMC in shrubland conditions. Sentinel optical and radar data were the most significant predictors in all models, despite the inclusion of ancillary predictors. S2_NDVI, S2_NDMI, S1_VV and S1_VV/VH ratio were the most relevant predictors for VMC and, to a lesser extent, SMC. Future research should quantify misregistration effects using plot vs. moving window values for the satellite predictors, consider meteorological control factors, and enhance sampling to overcome a main limitation of our study, small sample size.
2024
Authors
Ferreira, F; Ferreira, S; Mateus, C; Barbosa-Rocha, N; Coelho, L; Rodrigues, MA;
Publication
SAFETY SCIENCE
Abstract
Pupil size can be used as an important biomarker for occupational risks. In recent years, there has been an increase in the development of open-source tools dedicated to obtaining and measuring pupil diameter. However, it remains undetermined determined whether these tools are suitable for use in occupational settings. This study explores the significance of pupil size variation as a biomarker for occupational risks and evaluates existing opensource methods for potential use in both research and occupational settings, with the goal of to prevent occupational accidents and improve the health and performance of workers. To this end, a two-phase systematic literature review was conducted in the Web of Science TM, ScienceDirect (R), and Scopus (R) databases. For the relevance of monitoring pupil size variation in occupational settings, 15 articles were included. The articles were divided into three groups: mental workload, occupational stress, and mental fatigue. In most cases, pupil dilation increased with workload enhancement and with higher levels of stress. Regarding fatigue, it was noted that an increase in this condition corresponded with a decrease in pupil size. With respect to the open-source methodologies, 16 articles were identified, which were categorized into two groups: algorithms and software. Convolutional neural networks (CNN) 1 have exhibited superior performance among the various algorithmic approaches studied. Building on this insight, and considering the evaluations of software options, MEYE emerges as the premier open-source system for deployment in occupational settings due to its compatibility with a standard computer webcam. This feature positions MEYE as a particularly practical tool for workers in stable environments, like those of developers and administrators.
2024
Authors
Santos, JC; Santos, MS; Abreu, PH;
Publication
ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT I, IDA 2024
Abstract
Medical imaging classification improves patient prognoses by providing information on disease assessment, staging, and treatment response. The high demand for medical imaging acquisition requires the development of effective classification methodologies, occupying deep learning technologies, the pool position for this task. However, the major drawback of such techniques relies on their black-box nature which has delayed their use in real-world scenarios. Interpretability methodologies have emerged as a solution for this problem due to their capacity to translate black-box models into clinical understandable information. The most promising interpretability methodologies are concept-based techniques that can understand the predictions of a deep neural network through user-specified concepts. Concept activation regions and concept activation vectors are concept-based implementations that provide global explanations for the prediction of neural networks. The explanations provided allow the identification of the relationships that the network learned and can be used to identify possible errors during training. In this work, concept activation vectors and concept activation regions are used to identify flaws in neural network training and how this weakness can be mitigated in a human-in-the-loop process automatically improving the performance and trustworthiness of the classifier. To reach such a goal, three phases have been defined: training baseline classifiers, applying the concept-based interpretability, and implementing a human-in-the-loop approach to improve classifier performance. Four medical imaging datasets of different modalities are included in this study to prove the generality of the proposed method. The results identified concepts in each dataset that presented flaws in the classifier training and consequently, the human-in-the-loop approach validated by a team of 2 clinicians team achieved a statistically significant improvement.
2024
Authors
Leites, J; Cerqueira, V; Soares, C;
Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III
Abstract
Most forecasting methods use recent past observations (lags) to model the future values of univariate time series. Selecting an adequate number of lags is important for training accurate forecasting models. Several approaches and heuristics have been devised to solve this task. However, there is no consensus about what the best approach is. Besides, lag selection procedures have been developed based on local models and classical forecasting techniques such as ARIMA. We bridge this gap in the literature by carrying out an extensive empirical analysis of different lag selection methods. We focus on deep learning methods trained in a global approach, i.e., on datasets comprising multiple univariate time series. Specifically, we use NHITS, a recently proposed architecture that has shown competitive forecasting performance. The experiments were carried out using three benchmark databases that contain a total of 2411 univariate time series. The results indicate that the lag size is a relevant parameter for accurate forecasts. In particular, excessively small or excessively large lag sizes have a considerable negative impact on forecasting performance. Cross-validation approaches show the best performance for lag selection, but this performance is comparable with simple heuristics. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Authors
Ferreira, V; Pinto, T; Baptista, J;
Publication
ELECTRONICS
Abstract
The increase in renewable generation of a distributed nature has brought significant new challenges to power and energy system management and operation. Self-consumption in buildings is widespread, and with it rises the need for novel, adaptive and intelligent building energy management systems. Although there is already extensive research and development work regarding building energy management solutions, the capabilities for adaptation and contextualization of decisions are still limited. Consequently, this paper proposes a novel contextual rule-based system for energy management in buildings, which incorporates a contextual dimension that enables the adaptability of the system according to diverse contextual situations and the presence of multiple users with different preferences. Results of a case study based on real data show that the contextualization of the energy management process can maintain energy costs as low as possible, while respecting user preferences and guaranteeing their comfort.
2024
Authors
Lorgat, MG; Paredes, H; Rocha, T;
Publication
Lecture Notes in Networks and Systems
Abstract
The human population with disability is rapidly expanding, more than 15% of people worldwide suffer from a disability and, despite the availability of accessibility guidelines, the websites are still inaccessible. Moreover, professionals with knowledge of accessibility and design abilities are hard to come by. Therefore, the current paper addresses the introduction of accessibility to the Software Engineering students through AccessCademy, a gamification-based tool, in a fun way. The activity is delivered via a Web-based learning environment, that presents bad accessibility scenarios or failures based on the Web Content Accessibility Guidelines (WCAG), and then encourages the students to solve them. Furthermore, a case study will be presented that evaluated the learning effectiveness of the tool in the context of a university course. The results demonstrated the potential of AccessCademy which offers students a fun and engaging way to learn about accessibility, to understand the importance of accessible design with WCAG and gain accessible design skills as well. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.