2024
Authors
Silva, M; Kumar, S; Kök, A; Cardoso, A; Hummel, M; Nielsen, PS; Khan, BS; Faria, AS; Jensterle, M; Marques, C;
Publication
ENERGY CONVERSION AND MANAGEMENT
Abstract
At a time when European countries try to cope with escalating energy prices while decarbonizing their economies, waste heat recovery and reuse arises as part of the solution for sustainable energy transitions. The lack of appropriate assessment tools has been pointed out as one of the main barriers to the wider deployment of waste heat recovery projects and as a reason why its potential remains largely untapped. The EMB3Rs platform emerges as an online, open-source, comprehensive and novel tool that provides an integrated assessment of different types of waste heat recovery solutions, (e.g. internal or external) and comprises several analysis dimensions (e.g. physical, geographical, technical, market, and business models). It has been developed together with stakeholders, and tested in a number of representative contexts, covering both industrial and heat network applications. This has demonstrated the enormous potential of the tool in dealing with complex simulations, while delivering accurate results within a significantly lower time-frame than traditional analysis. The EMB3Rs tool removes important barriers such as analysis costs, time and complexity for the user, and aims at supporting a wider investment in waste heat recovery and reuse by providing an integrated estimation of the costs and benefits of such projects. This paper describes the tool and illustrates how it can be applied to help unlock the potential of waste heat recovery across European countries.
2024
Authors
Kupriyanov, V; Pinheiro, MR; Carvalho, SD; Carneiro, IC; Henrique, RM; Tuchin, VV; Oliveira, LM; Amouroux, M; Kistenev, Y; Blondel, W;
Publication
TISSUE OPTICS AND PHOTONICS III
Abstract
Colorectal cancer is the second most common cancer and the second with the highest associated deaths in the world. Methods used in clinical practice for colon cancer diagnosis are fairly effective but quite unpleasant and not always applicable in situations where the patient has symptoms of colonic obstruction. This problem can be solved by the use of optical methods that can be applied less invasively. This study presents the results of classification of cancerous and healthy colon tissue absorption coefficient spectra. The absorption coefficient was measured using direct calculations from the total reflectance and total transmittance spectra obtained ex vivo. Classification was performed using support vector machine, multilayer perceptron and linear discriminant analysis.
2024
Authors
Mastelini, SM; Veloso, B; Halford, M; de Carvalho, ACPDF; Gama, J;
Publication
INFORMATION FUSION
Abstract
Nearest neighbor search (NNS) is one of the main concerns in data stream applications since similarity queries can be used in multiple scenarios. Online NNS is usually performed on a sliding window by lazily scanning every element currently stored in the window. This paper proposes Sliding Window-based Incremental Nearest Neighbors (SWINN), a graph-based online search index algorithm for speeding up NNS in potentially never-ending and dynamic data stream tasks. Our proposal broadens the application of online NNS-based solutions, as even moderately large data buffers become impractical to handle when a naive NNS strategy is selected. SWINN enables efficient handling of large data buffers by using an incremental strategy to build and update a search graph supporting any distance metric. Vertices can be added and removed from the search graph. To keep the graph reliable for search queries, lightweight graph maintenance routines are run. According to experimental results, SWINN is significantly faster than performing a naive complete scan of the data buffer while keeping competitive search recall values. We also apply SWINN to online classification and regression tasks and show that our proposal is effective against popular online machine learning algorithms.
2024
Authors
Schneider, S; Parada, E; Sengl, D; Baptista, J; Oliveira, PM;
Publication
FRONTIERS IN SUSTAINABLE CITIES
Abstract
Despite the ubiquitous term climate neutral cities, there is a distinct lack of quantifiable and meaningful municipal decarbonization goals in terms of the targeted energy balance and composition that collectively connect to national scenarios. In this paper we present a simple but useful allocation approach to derive municipal targets for energy demand reduction and renewable expansion based on national energy transition strategies in combination with local potential estimators. The allocation uses local and regional potential estimates for demand reduction and the expansion of renewables and differentiates resulting municipal needs of action accordingly. The resulting targets are visualized and opened as a decision support system (DSS) on a web-platform to facilitate the discussion on effort sharing and potential realization in the decarbonization of society. With the proposed framework, different national scenarios, and their implications for municipal needs for action can be compared and their implications made explicit.
2024
Authors
Ferreira, DR; Mendes, A; Ferreira, JF;
Publication
CoRR
Abstract
2024
Authors
Barros, FS; Graça, PA; Lima, JJG; Pinto, RF; Restivo, A; Villa, M;
Publication
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Abstract
Solar wind forecasting is a core component of Space Weather, a field that has been the target of many novel machine-learning approaches. The continuous monitoring of the Sun has provided an ever-growing ensemble of observations, facilitating the development of forecasting models that predict solar wind properties on Earth and other celestial objects within the solar system. This enables us to prepare for and mitigate the effects of solar wind-related events on Earth and space. The performance of some simulation-based solar wind models depends heavily on the quality of the initial guesses used as initial conditions. This work focuses on improving the accuracy of these initial conditions by employing a Recurrent Neural Network model. The study's findings confirmed that Recurrent Neural Networks can generate better initial guesses for the simulations, resulting in faster and more stable simulations. In our experiments, when we used predicted initial conditions, simulations ran an average of 1.08 times faster, with a statistically significant improvement and reduced amplitude transients. These results suggest that the improved initial conditions enhance the numerical robustness of the model and enable a more moderate integration time step. Despite the modest improvement in simulation convergence time, the Recurrent Neural Networks model's reusability without retraining remains valuable. With simulations lasting up to 12 h, an 8% gain equals one hour saved per simulation. Moreover, the generated profiles closely match the simulator's, making them suitable for applications with less demanding physical accuracy.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.