Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

The Application of Artificial Intelligence in Recommendation Systems Reinforced Through Assurance of Learning in Personalized Environments of e-Learning

Authors
Fresneda-Bottaro, F; Santos, A; Martins, P; Reis, L;

Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, WORLDCIST 2023

Abstract
Learning environments unquestionably enable learners to develop their pedagogical and scientific processes efficiently and effectively. Thus, considering the impossibility of not having conditions of autonomy over the routine underlying the studies and, consequently, not having guarantees of the learning carried out makes the learners experience gaps in the domain of materials adequate to their actual needs. The paper's objective is to present the relevance of the applicability of Artificial Intelligence in Recommendation Systems, reinforced through the Assurance of Learning, oriented towards adaptive-personalized practice in corporate e-learning contexts. The research methodology underlying the work fell on Design Science Research, as it is considered adequate to support the research, given the need to carry out the design phases, development, construction, evaluation, validation of the artefact and, finally, communication of the results. The main results instigate the development of an Adaptive-Personalized Learning framework for corporate e-learning, provided with models of Artificial Intelligence and guided using the Assurance of Learning process. It becomes central that learners can enjoy adequate academic development. In this sense, the framework has an implicit structure that promotes the definition of personalized attributes, which involves recommendations and customizations of content per profile, including training content that will be suggested and learning activity content that will be continuously monitored, given the specific needs of learners.

2024

Data Augmented Rule-based Expert System to Control a Hybrid Storage System

Authors
Bessa, RJ; Lobo, F; Fernandes, F; Silva, B;

Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
Hybrid storage systems that combine high energy density and high power density technologies can enhance the flexibility and stability of microgrids and local energy communities under high renewable energy shares. This work introduces a novel approach integrating rule-based (RB) methods with evolutionary strategies (ES)-based reinforcement learning. Unlike conventional RB methods, this approach involves encoding rules in a domain-specific language and leveraging ES to evolve the symbolic model via data-driven interactions between the control agent and the environment. The results of a case study with Liion and redox flow batteries show that the method effectively extracted rules that minimize the energy exchanged between the community and the grid.

2024

Dynamic Online Parameter Configuration of Genetic Algorithms Using Reinforcement Learning

Authors
Oliveira, V; Pinto, T; Ramos, C;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
The effectiveness of optimizing complex problems is closely linked to the configuration of parameters in search algorithms, especially when considering metaheuristic optimization models. Although various automated methods for algorithm configuration have been proposed to alleviate users from manually tuning parameters, there is still unexplored potential in dynamically adjusting certain algorithm parameters during execution, which can lead to enhanced performance. The main objective is to comparatively analyze the effectiveness of manual parameter tuning compared to a dynamic online configuration approach based on reinforcement learning. To this end, the State-Action-Reward-State-Action (SARSA) algorithm is adapted to adjust the parameters of a genetic algorithm, namely population size, crossover rate, mutation rate, and number of generations. Tests are conducted with these two methods on benchmark functions commonly used in the literature. Additionally, the proposed model has been evaluated in a practical problem of optimizing energy trading portfolios in the electricity market. Results indicate that the reinforcement learning-based algorithm tends to achieve seemingly better results than manual configuration, while maintaining very similar execution times. This result suggests that online parameter tuning approaches may be more effective and offer a viable alternative for optimization in metaheuristic algorithms. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Learning efficient in-store picking strategies to reduce customer encounters in omnichannel retail

Authors
Neves Moreira, F; Amorim, P;

Publication
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS

Abstract
Omnichannel retailers are reinventing stores to meet the growing demand of the online channel. Several retailers now use stores as supporting distribution centers to offer quicker Buy-Online-Pickup-In-Store (BOPS) and Ship-From-Store (SFS) services. They resort to in-store picking to serve online orders using existing assets. However, in-store picking operations require picker carts traveling through store aisles, competing for store space, and possibly harming the offline customer experience. To learn picking policies that acknowledge interactions between pickers and offline customers, we formalize a new problem called Dynamic In-store Picker Routing Problem (diPRP). This problem considers a picker that tries to pick online orders (seeking) while minimizing customer encounters (hiding) - preserving the offline customer experience. We model the problem as a Markov Decision Process (MDP) and solve it using a hybrid solution approach comprising mathematical programming and reinforcement learning components. Computational experiments on synthetic instances suggest that the algorithm converges to efficient policies. We apply our solution approach in the context of a large European retailer to assess the proposed policies regarding the number of orders picked and customers encountered. The learned policies are also tested in six different retail settings, demonstrating the flexibility of the proposed approach. Our work suggests that retailers should be able to scale the in-store picking of online orders without jeopardizing the experience of offline customers. The policies learned using the proposed solution approach reduced the number of customer encounters by up to 50%, compared to policies solely focused on picking orders. Thus, to pursue omnichannel strategies that adequately trade-off operational efficiency and customer experience, retailers cannot rely on actual simplistic picking strategies, such as choosing the shortest possible route.

2024

Submarine escape and rescue field trials with robotic systems at the REPMUS 2023 exercise

Authors
Pereira, R; Almeida, C; Soares, E; Silva, P; Matias, B; Ferreira, A; Sytnyk, D; Machado, D; Martins, P; Martins, A; Almeida, J;

Publication
OCEANS 2024 - SINGAPORE

Abstract
This paper underscores the critical role of evolving tools for underwater search and rescue. Successful submarine crew rescue hinges on detecting, locating, and obtaining detailed information about the submerged vessel. Robotic systems, particularly ROVs and AUVs, emerge as invaluable tools, offering swift deployment times compared to manned submersibles. This study presents findings from Submarine Escape and Rescue (SMER) field trials conducted during the REPMUS 2023 naval military exercise off the west coast of Portugal, showcasing the effectiveness of these tools in real-world emergency situations. An initial multibeam sonar search from the surface with the Mar Porfundo ship was performed, followed by a close detailed inspection and visual survey with the EVA AUV of a target military submarine (NRP Arp (a) over tildeo) stationed on the sea bottom.

2024

Identification of Consumption Patterns in Household Appliances using Data Association Model

Authors
Carneiro, L; Pinto, T; Baptista, J;

Publication
IEEE Power and Energy Society General Meeting

Abstract
Currently, energy consumption in residential buildings is increasingly high. To meet demand, renewable energies are increasingly being used to produce more energy in a sustainable way, which has led to an increase in the load on the distribution network. Thus, with the exponential growth of dependence on technologies, studies on consumption patterns are increasingly common in order to try to understand the needs of the population and, in this way, make a more rational and efficient use of energy. This article aims to find consumption patterns in residential devices, considering specific houses. This work proposes the use of the Apriori algorithm, which allows the creation of several association rules among devices. The results, considering several scenarios in a house with 9 appliances, show that, despite the Apriori algorithm's difficulty in finding associations in household appliances with little time of use, several interesting association rules can be identified, providing relevant insights for future consumption flexibility models applications. © 2024 IEEE.

  • 89
  • 4015