2024
Authors
Eddin, AN; Bono, J; Aparício, D; Ferreira, H; Ribeiro, P; Bizarro, P;
Publication
CoRR
Abstract
2024
Authors
Rodrigues, JC; Barros, AC; Claro, J;
Publication
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
Abstract
This paper analyses the process of generalisation of an innovative government-led public practice in the healthcare sector. The scaling and embedding involved in this generalisation process are assumed to be dependent on the multiple implementation processes (consecutive or simultaneous) that lead to a routine use of the innovation in different adopters. This paper, therefore, proposes the use of a configurational theory approach to conceptualise each implementation of the innovation during the generalisation process and shed light on the generalisation's scaling and embedding efforts. It suggests a set of recommendations and practices for generalisation managers, most notably: i) they should regard generalisations as organic processes where their main role is to create space for experimentation, learning and negotiation, and ii) they should adopt different modes of governance to identify adequate mechanisms and strategies and guide their actions. This configurational perspective allows them to monitor and manage the evolution of implementations, informs the valuable learning processes that take place in a generalisation and has been found to be a useful tool to support the crucial collaboration among the actors involved in a generalisation.
2024
Authors
Xavier, R; Silva, RS; Ribeiro, M; Moreira, W; Freitas, L; Oliveira, A Jr;
Publication
TELECOM
Abstract
Multi-Access Edge Computing (MEC) represents the central concept that enables the creation of new applications and services that bring the benefits of edge computing to networks and users. By implementing applications and services at the edge, close to users and their devices, it becomes possible to take advantage of extremely low latency, substantial bandwidth, and optimized resource usage. However, enabling this approach requires careful integration between the MEC framework and the open 5G core. This work is dedicated to designing a new service that extends the functionality of the Multi-Access Traffic Steering (MTS) API, acting as a strategic bridge between the realms of MEC and the 5G core. To accomplish this objective, we utilize free5GC (open-source project for 5G core) as our 5G core, deployed on the Kubernetes cluster. The proposed service is validated using this framework, involving scenarios of high user density. To conclude whether the discussed solution is valid, KPIs of 5G MEC applications described in the scientific community were sought to use as a comparison parameter. The results indicate that the service effectively addresses the described issues while demonstrating its feasibility in various use cases such as e-Health, Paramedic Support, Smart Home, and Smart Farms.
2024
Authors
Pereira, MI; Moreira, C;
Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
The progressive replacement of thermal power plants by converter-interfaced generation, such as wind and solar power plants, reduces the synchronous component available in the system. Additionally, as converter-interfaced renewable energy sources do not directly provide inertia to the power grid, electric power systems are facing a notorious inertia reduction. When facing disturbances affecting the balance between the generation and demand, reduced inertia systems exhibit higher and faster frequency deviations and dynamics. This can result in the disconnection of generation units as well as load shedding, provoking cascading effects that can compel severe power outages. This work examines the impacts of the progressive integration of converter-interfaced renewable energy sources in the frequency stability, considering critical disturbances involving short-circuits in different locations. To simulate the dynamic behaviour of a network containing high shares of renewable energy generation, the IEEE 39-bus system is used while resorting to the PSS/E simulation package. After obtaining a scenario with reduced synchronous generation, the network's stability is assessed in face of key frequency indicators (frequency nadir and Rate of Change of Frequency, RoCoF). Regarding the critical disturbances applied in a low inertia scenario, different control solutions for the mitigation of frequency stability problems are tested and their performance is assessed comparatively. This involves the investigation of the performance of the active power-frequency control in the renewable energy sources, of synchronous condensers, or fast active power-frequency regulation services from stationary energy storage. Moreover, the influence of the location and apparent power of synchronous condensers (SCs) and Battery Energy Storage Systems (BESS) on the frequency indicators is evaluated.
2024
Authors
Marques C.M.; Silva A.C.; de Sousa J.P.;
Publication
Computer Aided Chemical Engineering
Abstract
In this work a hybrid simulation-optimization approach is presented to support decision-making towards improved resiliency and sustainability in pharmaceutical supply chain (PSC) operations. In a first step, a simulation model is used to assess the PSC performance under a set of disruptive scenarios to select the best inventory-based strategy for enhanced resiliency. Disruptions addressed in this work are mainly related to unpredicted medium-term production stoppages due to unexpected high-impact events such as accidents in production and transportation, or natural disasters. In a second step, a multi-objective mixed integer linear programming (MO-MILP) model is developed to optimize the selected inventory-based strategy regarding the economic, social, and environmental dimensions. In particular, the social and environmental aspects are introduced by anticipating the expected waste generation of close to expire medicines, redirecting them into a donation scheme. The proposed approach is applied to a representative PSC, with preliminary results showing the relevance of this tool for decision-makers to assess the trade-offs associated to the economic and social dimensions, as well as their impacts on waste generation.
2024
Authors
Castro, V; Sousa, P; Moreira, L; Lopes, P;
Publication
IET Conference Proceedings
Abstract
This paper discusses the assessment of integrating photovoltaic-battery hybrid power plants into the electrical grids of the Azores islands and their ability to comply with advanced network services. To ensure the hybrid power plant supports the grid operational requirements, a methodology was devised through steady-state and dynamic numerical simulations. On one hand, the steady-state analysis generated active-reactive power diagrams for different voltage levels at the plant’s interconnection point with the island’s grid, demonstrating that the internal grid of the PV-battery hybrid power plant allows a significant range of reactive power modulation in different operating conditions. On the other hand, dynamic analysis highlighted the plant’s crucial role in modulating reactive current production during grid faults. Additionally, it showed the plant’s capability to automatically reduce active power injection during over-frequency events and, as a result, lessening the frequency regulation effort for synchronous generators and fast energy storage system. © Energynautics GmbH.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.