2025
Authors
António Correia; Tommi Kärkkäinen; Shoaib Jameel; Daniel Schneider; Pedro Antunes; Benjamim Fonseca; Andrea Grover;
Publication
Lecture notes in networks and systems
Abstract
2025
Authors
Cunha, LF; Guimarães, N; Mendes, A; Campos, R; Jorge, A;
Publication
Advances in Information Retrieval - 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6-10, 2025, Proceedings, Part V
Abstract
In healthcare, diagnoses usually rely on physician expertise. However, complex cases may benefit from consulting similar past clinical reports cases. In this paper, we present MedLink (http://medlink.inesctec.pt), a tool that given a free-text medical report, retrieves and ranks relevant clinical case reports published in health conferences and journals, aiming to support clinical decision-making, particularly in challenging or complex diagnoses. To this regard, we trained two BERT models on the sentence similarity task: a bi-encoder for retrieval and a cross-encoder for reranking. To evaluate our approach, we used 10 medical reports and asked a physician to rank the top 10 most relevant published case reports for each one. Our results show that MedLink’s ranking model achieved NDCG@10 of 0.747. Our demo also includes the visualization of clinical entities (using a NER model) and the production of a textual explanation (using a LLM) to ease comparison and contrasting between reports. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Authors
Graça, PA; Alves, JC; Ferreira, BM;
Publication
OCEANS 2025 - Great Lakes
Abstract
2025
Authors
Santos, F; Pinto, T; Baptista, J;
Publication
2025 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)
Abstract
2025
Authors
Zamani, M; Prieta Pintado, Fdl; Pinto, T;
Publication
Comput. Electr. Eng.
Abstract
[No abstract available]
2025
Authors
Paulos J.; Silva P.R.; Bessa R.J.; Marot A.; Dejaegher J.; Donnot B.;
Publication
2025 IEEE Kiel Powertech Powertech 2025
Abstract
With the growing need for AI-driven solutions in power grid management, this work addresses the challenge of creating realistic synthetic operating scenarios essential for developing, testing, and validating AI-based decision-making systems. It uses spatial-temporal noise functions, predefined patterns, and optimal power flow to model renewable energy and conventional power plant generation, load, and losses. Quantitative and visual key performance indicators are proposed to evaluate the quality of the generated operating scenarios, and the validation highlights the framework's ability to emulate diverse and practical operating scenarios, bridging gaps in AI-driven power system research and real-world applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.