Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

MedLink: Retrieval and Ranking of Case Reports to Assist Clinical Decision Making

Authors
Cunha, LF; Guimarães, N; Mendes, A; Campos, R; Jorge, A;

Publication
Advances in Information Retrieval - 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6-10, 2025, Proceedings, Part V

Abstract
In healthcare, diagnoses usually rely on physician expertise. However, complex cases may benefit from consulting similar past clinical reports cases. In this paper, we present MedLink (http://medlink.inesctec.pt), a tool that given a free-text medical report, retrieves and ranks relevant clinical case reports published in health conferences and journals, aiming to support clinical decision-making, particularly in challenging or complex diagnoses. To this regard, we trained two BERT models on the sentence similarity task: a bi-encoder for retrieval and a cross-encoder for reranking. To evaluate our approach, we used 10 medical reports and asked a physician to rank the top 10 most relevant published case reports for each one. Our results show that MedLink’s ranking model achieved NDCG@10 of 0.747. Our demo also includes the visualization of clinical entities (using a NER model) and the production of a textual explanation (using a LLM) to ease comparison and contrasting between reports. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Promoting Fun and Social Interaction in Public Spaces – An EPS@ISEP 2023 Project

Authors
Faber, A; Torres, Â; Boucher, E; Ljungkvist, F; Hauspie, L; Spaas, S; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
In the spring of 2023, a team of European Project Semester (EPS) students enrolled at the Instituto Superior de Engenharia do Porto (ISEP) chose to foster socialisation in urban spaces. Public spaces are ideal sites to promote social interaction and community involvement. The aim of this project is then to use such places to divert attention from smartphones by promoting physical social interaction. In recent years, the combination of interactive games and technology has emerged as a potential strategy to increase the use and allure of public areas. The proposed solution, named Shift it, is a puzzle game that combines technology with old school gaming, providing a fun and unique socialising experience. The game, to be installed in public areas, has as key features inclusiveness (invites all people to play), fun (creates a healthy competitive setup) and empathy (creates puzzles by taking and scrambling user pictures). This paper presents the proposed design, which was based on state-of-the-art, ethics, market and sustainability analyses, followed by the development and testing of a proof-of-concept prototype. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.

2025

Digital Twins of the Ocean - Interoperability Pipeline Architecture

Authors
Berre, AJ; Sylaios, G; Agorogiannis, E; Mayer, I; Sarmento, P; Laudy, C; Oliveira, MA;

Publication
OCEANS 2025 BREST

Abstract
The Iliad Digital Twins of the Ocean is a European Green Deal Project which aims at the development of an architecture and set of components, tools and services for the creation of digital twins of the ocean. The approach aims to support the emerging European Digital Twins of the Ocean (EDITO) initative with associated projects like EDITO Infra and EDITO Model lab and the overall Destination Earth (DestinE) initiative and also taking advantage of the evolving European Common Data Spaces including the Green Deal Data Space, the Copernicus Data Space and the EOSC cross domain Data Space. The paper presents the final version of the Iliad digital twin interoperability architecture based on four steps of a digital twin pipeline from Data Acquisition/Collection to Digital Twin Data Representation to Digital Twin Hybrid and Cognitive/AI Analytics Models and further to Digital Twin Visualisation and Control, which are presented together with associated Digital twin components and services.

2025

Identification and explanation of disinformation in wiki data streams

Authors
de Arriba-Pérez, F; García-Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;

Publication
INTEGRATED COMPUTER-AIDED ENGINEERING

Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers' critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model's prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.

2025

Guidelines for Using Mixed Reality to Teach STEM Subjects

Authors
Pataca, B; Barroso, J; Santos, V;

Publication
Communications in Computer and Information Science - Technology and Innovation in Learning, Teaching and Education

Abstract

2025

Quality Inspection on Transparent and Reflective Parts: A Systematic Review

Authors
Nascimento, R; Gonzalez, DG; Pires, EJS; Filipe, V; Silva, MF; Rocha, LF;

Publication
IEEE ACCESS

Abstract
The increasing demand for automated quality inspection in modern industry, particularly for transparent and reflective parts, has driven significant interest in vision-based technologies. These components pose unique challenges due to their optical properties, which often hinder conventional inspection techniques. This systematic review analyzes 24 peer-reviewed studies published between 2015 and 2025, aiming to assess the current state of the art in computer vision-based inspection systems tailored to such materials. The review synthesizes recent advancements in imaging setups, illumination strategies, and deep learning-based defect detection methods. It also identifies key limitations in current approaches, particularly regarding robustness under variable industrial conditions and the lack of standardized benchmarks. By highlighting technological trends and research gaps, this work offers valuable insights and directions for future research-emphasizing the need for adaptive, scalable, and industry-ready solutions to enhance the reliability and effectiveness of inspection systems for transparent and reflective parts.

  • 93
  • 4340