Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About Computer Science and Engineering

Computer Science and Engineering

Computers, ranging from ever so scaleddown programmable devices, the ubiquitous smartphones to supercomputers currently capable of performing more than a trillion operations per second, have become a central, and increasingly indispensable, component of everyday life. Computer science and engineering are the linchpins to the unstoppable evolution of computing and enable its application to an ever-growing plethora of computerbased solutions.

Additionally, computer systems in crucial sectors such as utilities, healthcare, transportation, and finance present new, often unanticipated, risks that defy our knowledge and present hard and intricate challenges associated with interoperability, scalability, security, and criticality. Worldwide, computing systems in organisations account for over 10% of all global energy consumption and approximately 2% of global CO2 emissions, making the sustainability of much of our innovation also a significant challenge.

news
Computer Science and Engineering

International conference discussed recent developments in computer graphics - with an award-winning INESC TEC research

The event (in Vila Real) brought together national and international experts in the field of computer graphics; it's worth highlighting the keynote speech by Augusto de Sousa, INESC TEC researcher, and the presentation of the Professor José Luís Encarnação Award, which acknowledged the Institute's research.  

17th December 2024

Computer Science and Engineering

There are bridges uniting biomedical engineering and supercomputing - INESC TEC researchers flew to Barcelona to cross them

For a week, Alicia Oliveira and Beatriz Cepa left INESC TEC's laboratories in Braga and went to Barcelona - the city that welcomed the ACM Summer School. The researchers explored some of the elemental HPC concepts and realised that - in a context dominated by computer science - their training in biomedical engineering was an asset.

31st October 2024

Computer Science and Engineering

Software bugs are as persistent as those in nature - a study by INESC TEC closed in on them

INESC TEC researchers developed the LazyFS tool, capable of injecting faults and reproducing data loss bugs. The solution helps to understand the origin and cause of said bugs, but also to validate protection mechanisms against failures. 

07th October 2024

Computer Science and Engineering

INESC TEC is the first Portuguese entity to join international consortium to accelerate the use of generative AI in science and engineering

Creating an open ecosystem that brings together representatives from academia, research centres, supercomputing centres and companies that are developing, training and using large-scale Artificial Intelligence (AI) models, as well as building and operating large-scale computing systems – this is the goal of TPC, The Trillion Parameter Consortium. INESC TEC was the first Portuguese entity to join this partnership, which gathers more than 70 entities and aims to promote the sharing of experiences, tools and data, collaboration between teams, and best practices in the responsible development of AI.

11th July 2024

Computer Science and Engineering

Edge databases have many benefits — and INESC TEC researchers have dedicated themselves to studying them

The paper Databases in Edge and Fog Environments: A Survey, signed by Luís Manuel Ferreira, Fábio Coelho and José Orlando Pereira - and published in ACM Computing Surveys -, establishes innovative concepts in the edge databases area, resorting to several publications on hardware used, latency performance, energy consumption and privacy. This new type of database benefits from devices close to the users to improve performance and features.

03rd July 2024

Publications

2024

Assessment of Multiple Fiducial Marker Trackers on Hololens 2

Authors
Costa, GM; Petry, MR; Martins, JG; Moreira, APGM;

Publication
IEEE ACCESS

Abstract
Fiducial markers play a fundamental role in various fields in which precise localization and tracking are paramount. In Augmented Reality, they provide a known reference point in the physical world so that AR systems can accurately identify, track, and overlay virtual objects. This accuracy is essential for creating a seamless and immersive AR experience, particularly when prompted to cope with the sub-millimeter requirements of medical and industrial applications. This research article presents a comparative analysis of four fiducial marker tracking algorithms, aiming to assess and benchmark their accuracy and precision. The proposed methodology compares the pose estimated by four algorithms running on Hololens 2 with those provided by a highly accurate ground truth system. Each fiducial marker was positioned in 25 sampling points with different distances and orientations. The proposed evaluation method is not influenced by human error, relying only on a high-frequency and accurate motion tracking system as ground truth. This research shows that it is possible to track the fiducial markers with translation and rotation errors as low as 1.36 mm and 0.015 degrees using ArUco and Vuforia, respectively.

2024

Educational Practices and Strategies With Immersive Learning Environments: Mapping of Reviews for Using the Metaverse

Authors
Beck, D; Morgado, L; O'Shea, P;

Publication
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES

Abstract
The educational metaverse promises fulfilling ambitions of immersive learning, leveraging technology-based presence alongside narrative and/or challenge-based deep mental absorption. Most reviews of immersive learning research were outcomes-focused, few considered the educational practices and strategies. These are necessary to provide theoretical and pedagogical frameworks to situate outcomes within a context where technology is in concert with educational approaches. We sought a broader perspective of the practices and strategies used in immersive learning environments, and conducted a mapping survey of reviews, identifying 47 studies. Extracted accounts of educational practices and strategies under thematic analysis yielded 45 strategies and 21 practices, visualized as a network clustered by conceptual proximity. Resulting clusters Active context, Collaboration, Engagement and Scaffolding, Presence, and Real and virtual multimedia learning expose the richness of practices and strategies within the field. The visualization maps the field, supporting decision-making when combining practices and strategies for using the metaverse in education, highlights which practices and strategies are supported by the literature, and the presence and absence of diversity within clusters.

2024

Performance and explainability of feature selection-boosted tree-based classifiers for COVID-19 detection

Authors
Rufino, J; Ramírez, JM; Aguilar, J; Baquero, C; Champati, J; Frey, D; Lillo, RE; Fernández Anta, A;

Publication
HELIYON

Abstract
In this paper, we evaluate the performance and analyze the explainability of machine learning models boosted by feature selection in predicting COVID-19-positive cases from self-reported information. In essence, this work describes a methodology to identify COVID-19 infections that considers the large amount of information collected by the University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS). More precisely, this methodology performs a feature selection stage based on the recursive feature elimination (RFE) method to reduce the number of input variables without compromising detection accuracy. A tree-based supervised machine learning model is then optimized with the selected features to detect COVID-19-active cases. In contrast to previous approaches that use a limited set of selected symptoms, the proposed approach builds the detection engine considering a broad range of features including self-reported symptoms, local community information, vaccination acceptance, and isolation measures, among others. To implement the methodology, three different supervised classifiers were used: random forests (RF), light gradient boosting (LGB), and extreme gradient boosting (XGB). Based on data collected from the UMD-CTIS, we evaluated the detection performance of the methodology for four countries (Brazil, Canada, Japan, and South Africa) and two periods (2020 and 2021). The proposed approach was assessed in terms of various quality metrics: F1-score, sensitivity, specificity, precision, receiver operating characteristic (ROC), and area under the ROC curve (AUC). This work also shows the normalized daily incidence curves obtained by the proposed approach for the four countries. Finally, we perform an explainability analysis using Shapley values and feature importance to determine the relevance of each feature and the corresponding contribution for each country and each country/year.

2024

Multilayer quantile graph for multivariate time series analysis and dimensionality reduction

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.

2024

Virtual Reality in Tourism Promotion: A Research Agenda Based on A Bibliometric Approach

Authors
Sousa, N; Alén, E; Losada, N; Melo, M;

Publication
JOURNAL OF QUALITY ASSURANCE IN HOSPITALITY & TOURISM

Abstract
Virtual Reality (VR) has the capacity to increase tourists' responses, compared with other marketing tools. In tourism, it can play a decisive role in its promotion, since it can generate impactful information that will increase the visit intention. However, there are few reviews that focus on VR as a promotional tool in tourism. To overcome this limitation, this work provides a bibliometric analysis of papers from the Web of Science and Scopus databases. The analysis allows us to conclude that although its potential is recognized, the use of VR is infrequent in tourism. We also identified three main avenues for future research: presence and devices, promotional strategies, and segments to explore.

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Authors
Costa C.M.; Dias J.; Nascimento R.; Rocha C.; Veiga G.; Sousa A.; Thomas U.; Rocha L.;

Publication
Lecture Notes in Mechanical Engineering

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator.