Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Robótica e Sistemas Autónomos

A nossa missão no CRAS é desenvolver soluções robóticas inovadoras para ambientes complexos e múltiplas operações, incluindo recolha de dados, inspeção, mapeamento, vigilância ou intervenção.

No CRAS trabalhamos em quatro áreas de investigação principais: navegação autónoma; missões de longo prazo; sensorização, mapeamento e intervenção; operações de múltiplas plataformas.

Últimas Notícias
Robótica

A revolução na operação e manutenção de parques eólicos offshore envolve robôs e inteligência artificial e tem assinatura INESC TEC

Chama-se AEROSUB (Automated Inspection Robots for Surface, Aerial and Underwater Substructures) o novo projeto de 12,1M€ coordenado pelo INESC TEC cujo principal objetivo é revolucionar a operação e a manutenção de parques eólicos offshore fixos e flutuantes. Como? Através do desenvolvimento de soluções tecnológicas de classe mundial que tornem possível reduzir os custos de operação da infraestrutura de produção de energia renovável, em ambientes extremos. Para tornar isto uma realidade, já em 2030, diversas soluções robóticas serão equipadas com tecnologias de inteligência artificial (IA) e análise de dados.

30 janeiro 2025

Robótica

INESC TEC integra experiência-piloto para monitorização de ruído no mar

A sul de São Miguel, no arquipélago dos Açores, três boias estiveram durante 24 horas no mar a recolher dados, no caso, ruído relacionado com as atividades humanas e que tem impacto no comportamento dos cetáceos. Foi a primeira vez que se recolheu informação sobre o ruído no mar ao largo de São Miguel – a mais de 10 quilómetros da costa - e esta experiência-piloto contou com a participação do INESC TEC.

02 dezembro 2024

Robótica

Investigadores do INESC TEC organizam desafio de localização subaquática na conferência Breaking the Surface 2024

Investigadores do INESC TEC participaram na organização e na condução de um desafio técnico na conferência internacional Breaking the Surface 2024 (BTS), que decorreu de 30 de setembro a 7 de outubro em Biograd na Moru, na Croácia. Este evento interdisciplinar, que já vai na sua 16ª edição, é dedicado à robótica e à tecnologia marinha. A edição deste ano reuniu 198 especialistas e investigadores de diversas áreas, pertencentes a mais de 20 países, que juntos trocaram conhecimentos e experiências no domínio da robótica marinha e as suas diversas aplicações.

28 outubro 2024

Robótica

INESC TEC volta a bater recorde com dois robôs portugueses a descer a 830m de profundidade para proteção de infraestruturas críticas subaquáticas, no maior exercício robótico do mundo

O REPMUS – Robotic Experimentation and Prototyping with Maritime Unmanned Systems, o maior exercício de experimentação operacional de sistemas não tripulados do mundo, realizou-se mais uma vez em Portugal, entre os dias 9 e 27 de setembro de 2024, nas localidades de Troia e Sesimbra.

17 outubro 2024

Robótica

Portugal na linha da frente com nova tecnologia para medir gás radão e melhorar as projeções climáticas globais

Durante quatro anos o INESC TEC vai liderar um consórcio internacional de 2,6M€ que tem como objetivo utilizar técnicas avançadas de medição da radioatividade ambiental. Espera-se que em 2028 existam novas soluções tecnológicas capazes de melhorar quer a investigação climática – principalmente no que à estimativa das emissões de gases de efeito de estufa diz respeito – quer a proteção radiológica da população e do meio ambiente.

02 outubro 2024

Equipa
001

Laboratórios

Laboratório de Robótica e Sistemas Robóticos Autónomos

Publicações

CRAS Publicações

Ler todas as publicações

2025

A Multimodal Perception System for Precise Landing of UAVs in Offshore Environments

Autores
Claro, RM; Neves, FSP; Pinto, AMG;

Publicação
Journal of Field Robotics

Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations. © 2025 Wiley Periodicals LLC.

2025

Evaluation of Deep Learning Models for Polymetallic Nodule Detection and Segmentation in Seafloor Imagery

Autores
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;

Publicação
Journal of Marine Science and Engineering

Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.

2025

Identification and explanation of disinformation in wiki data streams

Autores
Arriba Pérez, Fd; García Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;

Publicação
Integrated Computer-Aided Engineering

Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers’ critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model’s prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.

2025

DBD plasma-treated polyester fabric coated with doped PEDOT:PSS for thermoregulation

Autores
Magalhaes, C; Ribeiro, AI; Rodrigues, R; Meireles, A; Alves, AC; Rocha, J; de Lima, FP; Martins, M; Mitu, B; Satulu, V; Dinescu, G; Padrao, J; Zille, A;

Publicação
APPLIED SURFACE SCIENCE

Abstract
The manufacturing process of thermoregulation products with polyester (PES) fabric and conductive polymers such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) with proper wearability, comfort, and high performance is still a challenge due to low adhesion, environment instability and nonuniform coatings. This study presents a simple and effective method for producing thermoregulatory PES fabrics using the Joule heating effect. Textiles treated with dielectric barrier discharge (DBD) plasma were functionalized with PEDOT:PSS incorporating secondary dopants, such as dimethyl sulfoxide (DMSO) and glycerol (GLY). PEDOT:PSS was used because it does not compromise the mechanical properties of base materials. DBD plasma treatment was applied to PES to improve the substrate's functional groups and consequently increase adhesion and homogeneity of the PEDOT:PSS on the substrate. The polymer were applied to the textiles by dip-pad-drycure method ensuring uniform distribution and homogeneous heating of the materials. The samples' conductivity, impedance, potential and Joule effect, and their morphological, chemical and thermal properties were studied. Control samples without plasma treatment and secondary dopants were also prepared. The results showed that the DBD-treated samples, coated with 5 layers of PEDOT:PSS, doped with DMSO 7 % (w/v), displayed the best conductivity and Joule effect performance reaching 44.3 degrees C after 1 h.

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publicação
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

Factos & Números

8Artigos em revistas indexadas

2020

11Docentes do Ensino Superior

2020

7Artigos em conferências indexadas

2020

Contactos