Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre Ciência e Engenharia de Computadores

Ciência e Engenharia dos Computadores

Os computadores, que vão desde os cada vez mais reduzidos dispositivos programáveis, os omnipresentes smartphones, até aos supercomputadores, atualmente capazes de realizar mais de um trilião de operações por segundo, tornaram-se uma componente central e cada vez mais indispensável da vida quotidiana. A ciência e a engenharia informática são os pilares da evolução imparável da computação e permitem a sua aplicação a uma infinidade cada vez maior de soluções baseadas em computadores.

Além disso, os sistemas informáticos em sectores cruciais como os serviços públicos, os cuidados de saúde, os transportes e as finanças apresentam riscos novos, muitas vezes imprevistos, que desafiam os nossos conhecimentos e colocam desafios difíceis e intrincados associados à interoperabilidade, à escalabilidade, à segurança e à criticidade. A nível mundial, os sistemas informáticos nas organizações são responsáveis por mais de 10% de todo o consumo global de energia e por cerca de 2% das emissões globais de CO2, o que faz com que a sustentabilidade de grande parte da nossa inovação seja também um desafio significativo.

notícias
Ciência e Engenharia dos Computadores

Conferência internacional discutiu os recentes desenvolvimentos da computação gráfica — com investigação INESC TEC premiada

Evento reuniu, em Vila Real, especialistas nacionais e internacionais na área da computação gráfica, com destaque para o keynote speech de Augusto de Sousa, investigador do INESC TEC, e da entrega do Prémio Professor José Luís Encarnação, que distinguiu investigação com marca do instituto.

17 dezembro 2024

Ciência e Engenharia dos Computadores

Há pontes a unir a engenharia biomédica e a supercomputação. Investigadoras INESC TEC voaram até Barcelona para as atravessar

Durante uma semana, Alicia Oliveira e Beatriz Cepa trocaram os laboratórios do INESC TEC em Braga por Barcelona, onde decorreu a ACM Summer School. Ali, as investigadoras exploraram alguns dos conceitos introdutórios na área do HPC e perceberam que, num contexto dominado pela informática, a sua formação em engenharia biomédica era, afinal, uma mais-valia.

31 outubro 2024

Ciência e Engenharia dos Computadores

Os bugs de software são tão persistentes como os da Natureza — uma investigação INESC TEC apertou-lhes a rede

Investigadores INESC TEC desenvolveram a ferramenta LazyFS, capaz de injetar faltas e reproduzir bugs de perda de dados. A solução vem ajudar a compreender a origem e a causa destes bugs, mas também validar mecanismos de proteção contra as falhas. 

07 outubro 2024

Ciência e Engenharia dos Computadores

INESC TEC é a primeira entidade portuguesa a integrar consórcio internacional para acelerar a utilização de IA generativa na ciência e na engenharia

Criar um ecossistema aberto que reúna representantes da academia, de centros de investigação, de centros de supercomputação e empresas, que se encontrem a desenvolver, treinar e utilizar modelos de Inteligência Artificial (IA) de grande escala, assim como a construir e a operar sistemas de computação de grande escala, também – este é o propósito do TPC - The Trillion Parameter Consortium. O INESC TEC foi a primeira entidade portuguesa a juntar-se a esta parceria, que conta com mais de 70 entidades e que visa promover a partilha de experiências, ferramentas e dados, a colaboração entre equipas, e as melhores práticas no desenvolvimento responsável da IA.

11 julho 2024

Ciência e Engenharia dos Computadores

Há vantagens nas bases de dados edge — e os investigadores do INESC TEC dedicaram-se a estudá-las

O artigo Databases in Edge and Fog Environments: A Survey, assinado por Luís Manuel Ferreira, Fábio Coelho e José Orlando Pereira e publicado na ACM Computing Surveys, estabelece conceitos inovadores na área de base de dados edge, recorrendo a diversas publicações ao nível de hardware utilizado, performance de latência, consumo de energia e privacidade. Este novo tipo de bases de dados tira partido de dispositivos situados próximos do utilizador para melhorar o desempenho e as funcionalidades oferecidas pelas mesmas.

03 julho 2024

Publicações

2024

Assessment of Multiple Fiducial Marker Trackers on Hololens 2

Autores
Costa, GM; Petry, MR; Martins, JG; Moreira, APGM;

Publicação
IEEE ACCESS

Abstract
Fiducial markers play a fundamental role in various fields in which precise localization and tracking are paramount. In Augmented Reality, they provide a known reference point in the physical world so that AR systems can accurately identify, track, and overlay virtual objects. This accuracy is essential for creating a seamless and immersive AR experience, particularly when prompted to cope with the sub-millimeter requirements of medical and industrial applications. This research article presents a comparative analysis of four fiducial marker tracking algorithms, aiming to assess and benchmark their accuracy and precision. The proposed methodology compares the pose estimated by four algorithms running on Hololens 2 with those provided by a highly accurate ground truth system. Each fiducial marker was positioned in 25 sampling points with different distances and orientations. The proposed evaluation method is not influenced by human error, relying only on a high-frequency and accurate motion tracking system as ground truth. This research shows that it is possible to track the fiducial markers with translation and rotation errors as low as 1.36 mm and 0.015 degrees using ArUco and Vuforia, respectively.

2024

Educational Practices and Strategies With Immersive Learning Environments: Mapping of Reviews for Using the Metaverse

Autores
Beck, D; Morgado, L; O'Shea, P;

Publicação
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES

Abstract
The educational metaverse promises fulfilling ambitions of immersive learning, leveraging technology-based presence alongside narrative and/or challenge-based deep mental absorption. Most reviews of immersive learning research were outcomes-focused, few considered the educational practices and strategies. These are necessary to provide theoretical and pedagogical frameworks to situate outcomes within a context where technology is in concert with educational approaches. We sought a broader perspective of the practices and strategies used in immersive learning environments, and conducted a mapping survey of reviews, identifying 47 studies. Extracted accounts of educational practices and strategies under thematic analysis yielded 45 strategies and 21 practices, visualized as a network clustered by conceptual proximity. Resulting clusters Active context, Collaboration, Engagement and Scaffolding, Presence, and Real and virtual multimedia learning expose the richness of practices and strategies within the field. The visualization maps the field, supporting decision-making when combining practices and strategies for using the metaverse in education, highlights which practices and strategies are supported by the literature, and the presence and absence of diversity within clusters.

2024

Performance and explainability of feature selection-boosted tree-based classifiers for COVID-19 detection

Autores
Rufino, J; Ramírez, JM; Aguilar, J; Baquero, C; Champati, J; Frey, D; Lillo, RE; Fernández Anta, A;

Publicação
HELIYON

Abstract
In this paper, we evaluate the performance and analyze the explainability of machine learning models boosted by feature selection in predicting COVID-19-positive cases from self-reported information. In essence, this work describes a methodology to identify COVID-19 infections that considers the large amount of information collected by the University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS). More precisely, this methodology performs a feature selection stage based on the recursive feature elimination (RFE) method to reduce the number of input variables without compromising detection accuracy. A tree-based supervised machine learning model is then optimized with the selected features to detect COVID-19-active cases. In contrast to previous approaches that use a limited set of selected symptoms, the proposed approach builds the detection engine considering a broad range of features including self-reported symptoms, local community information, vaccination acceptance, and isolation measures, among others. To implement the methodology, three different supervised classifiers were used: random forests (RF), light gradient boosting (LGB), and extreme gradient boosting (XGB). Based on data collected from the UMD-CTIS, we evaluated the detection performance of the methodology for four countries (Brazil, Canada, Japan, and South Africa) and two periods (2020 and 2021). The proposed approach was assessed in terms of various quality metrics: F1-score, sensitivity, specificity, precision, receiver operating characteristic (ROC), and area under the ROC curve (AUC). This work also shows the normalized daily incidence curves obtained by the proposed approach for the four countries. Finally, we perform an explainability analysis using Shapley values and feature importance to determine the relevance of each feature and the corresponding contribution for each country and each country/year.

2024

Multilayer quantile graph for multivariate time series analysis and dimensionality reduction

Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.

2024

Virtual Reality in Tourism Promotion: A Research Agenda Based on A Bibliometric Approach

Autores
Sousa, N; Alén, E; Losada, N; Melo, M;

Publicação
JOURNAL OF QUALITY ASSURANCE IN HOSPITALITY & TOURISM

Abstract
Virtual Reality (VR) has the capacity to increase tourists' responses, compared with other marketing tools. In tourism, it can play a decisive role in its promotion, since it can generate impactful information that will increase the visit intention. However, there are few reviews that focus on VR as a promotional tool in tourism. To overcome this limitation, this work provides a bibliometric analysis of papers from the Web of Science and Scopus databases. The analysis allows us to conclude that although its potential is recognized, the use of VR is infrequent in tourism. We also identified three main avenues for future research: presence and devices, promotional strategies, and segments to explore.

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Autores
Costa C.M.; Dias J.; Nascimento R.; Rocha C.; Veiga G.; Sousa A.; Thomas U.; Rocha L.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator.