Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Alexandre Amaral Oliveira
  • Cargo

    Assistente de Investigação
  • Desde

    01 agosto 2016
Publicações

2024

Oil Spill Mitigation with a Team of Heterogeneous Autonomous Vehicles

Autores
Dias, A; Mucha, A; Santos, T; Oliveira, A; Amaral, G; Ferreira, H; Martins, A; Almeida, J; Silva, E;

Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
This paper presents the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). This solution is based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be applied as the first line of the response to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or in the open sea during transport activities in a fast, efficient, and low-cost way. The paper describes the work done in the development of a team of autonomous vehicles able to carry as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), and the development of a multi-robot framework for efficient oil spill mitigation. Field tests have been performed in Portugal and Spain's harbors, with a simulated oil spill, and the coordinate oil spill task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV) STORK has been validated.

2024

Man-Machine Symbiosis UAV Integration for Military Search and Rescue Operations

Autores
Minhoto, V; Santos, T; Silva, LTE; Rodrigues, P; Arrais, A; Amaral, A; Dias, A; Almeida, J; Cunha, JPS;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Over the last few years, Man-Machine collaborative systems have been increasingly present in daily routines. In these systems, one operator usually controls the machine through explicit commands and assesses the information through a graphical user interface. Direct & implicit interaction between the machine and the user does not exist. This work presents a man-machine symbiotic concept & system where such implicit interaction is possible targeting search and rescue scenarios. Based on measuring physiological variables (e.g. body movement or electrocardiogram) through wearable devices, this system is capable of computing the psycho-physiological state of the human and autonomously identify abnormal situations (e.g. fall or stress). This information is injected into the control loop of the machine that can alter its behavior according to it, enabling an implicit man-machine communication mechanism. A proof of concept of this system was tested at the ARTEX (ARmy Technological EXperimentation) exercise organized by the Portuguese Army involving a military agent and a drone. During this event the soldier was equipped with a kit of wearables that could monitor several physiological variables and automatically detect a fall during a mission. This information was continuously sent to the drone that successfully identified this abnormal situation triggering the take-off and a situation awareness fly-by flight pattern, delivering a first-aid kit to the soldier in case he did not recover after a pre-determined time period. The results were very positive, proving the possibility and feasibility of a symbiotic system between humans and machines.

2024

LiDAR-Based Unmanned Aerial Vehicle Offshore Wind Blade Inspection and Modeling

Autores
Oliveira, A; Dias, A; Santos, T; Rodrigues, P; Martins, A; Almeida, J;

Publicação
DRONES

Abstract
The deployment of offshore wind turbines (WTs) has emerged as a pivotal strategy in the transition to renewable energy, offering significant potential for clean electricity generation. However, these structures' operation and maintenance (O&M) present unique challenges due to their remote locations and harsh marine environments. For these reasons, it is fundamental to promote the development of autonomous solutions to monitor the health condition of the construction parts, preventing structural damage and accidents. This paper explores the application of Unmanned Aerial Vehicles (UAVs) in the inspection and maintenance of offshore wind turbines, introducing a new strategy for autonomous wind turbine inspection and a simulation environment for testing and training autonomous inspection techniques under a more realistic offshore scenario. Instead of relying on visual information to detect the WT parts during the inspection, this method proposes a three-dimensional (3D) light detection and ranging (LiDAR) method that estimates the wind turbine pose (position, orientation, and blade configuration) and autonomously controls the UAV for a close inspection maneuver. The first tests were carried out mainly in a simulation framework, combining different WT poses, including different orientations, blade positions, and wind turbine movements, and finally, a mixed reality test, where a real vehicle performed a full inspection of a virtual wind turbine.

2024

Deep Reinforcement Learning Framework for UAV Indoor Navigation

Autores
Martins, JJ; Amaral, A; Dias, A;

Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
Unmanned Aerial Vehicle (UAV) applications, particularly for indoor tasks such as inventory management, infrastructure inspection, and emergency response, are becoming increasingly complex with dynamic environments and their different elements. During operation, the vehicle's response depends on various decisions regarding its surroundings and the task goal. Reinforcement Learning techniques can solve this decision problem by helping build more reactive, adaptive, and efficient navigation operations. This paper presents a framework to simulate the navigation of a UAV in an operational environment, training and testing it with reinforcement learning models for further deployment in the real drone. With the support of the 3D simulator Gazebo and the framework Robot Operating System (ROS), we developed a training environment conceivably simple and fast or more complex and dynamic, explicit as the real-world scenario. The multi-environment simulation runs in parallel with the Deep Reinforcement Learning (DRL) algorithm to provide feedback for the training. TD3, DDPG, PPO, and PPO+LSTM were trained to validate the framework training, testing, and deployment in an indoor scenario.

2023

GeoTec: A System for 3D Reconstruction in Underground Environment (Aveleiras Mine, Monastery of Tibães, NW Portugal)

Autores
Pires, A; Dias, A; Rodrigues, P; Silva, P; Santos, T; Oliveira, A; Ferreira, A; Almeida, J; Martins, A; Chaminé, I; Silva, E;

Publicação
Advances in Science, Technology and Innovation

Abstract