Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Álvaro Figueira
  • Cargo

    Responsável de Área
  • Desde

    01 março 2009
002
Publicações

2025

Post, Predict, and Rank: Exploring the Relationship Between Social Media Strategy and Higher Education Institution Rankings

Autores
Rocha, B; Figueira, Á;

Publicação
Informatics

Abstract
In today’s competitive higher education sector, institutions increasingly rely on international rankings to secure financial resources, attract top-tier talent, and elevate their global reputation. Simultaneously, these universities have expanded their presence on social media, utilizing sophisticated posting strategies to disseminate information and boost recognition and engagement. This study examines the relationship between higher education institutions’ (HEIs’) rankings and their social media posting strategies. We gathered and analyzed publications from 18 HEIs featured in a consolidated ranking system, examining various features of their social media posts. To better understand these strategies, we categorized the posts into five predefined topics—engagement, research, image, society, and education. This categorization, combined with Long Short-Term Memory (LSTM) and a Random Forest (RF) algorithm, was utilized to predict social media output in the last five days of each month, achieving successful results. This paper further explores how variations in these social media strategies correlate with the rankings of HEIs. Our findings suggest a nuanced interaction between social media engagement and the perceived prestige of HEIs.

2024

Topic Extraction: BERTopic's Insight into the 117th Congress's Twitterverse

Autores
Mendonça, M; Figueira, A;

Publicação
INFORMATICS-BASEL

Abstract
As social media (SM) becomes increasingly prevalent, its impact on society is expected to grow accordingly. While SM has brought positive transformations, it has also amplified pre-existing issues such as misinformation, echo chambers, manipulation, and propaganda. A thorough comprehension of this impact, aided by state-of-the-art analytical tools and by an awareness of societal biases and complexities, enables us to anticipate and mitigate the potential negative effects. One such tool is BERTopic, a novel deep-learning algorithm developed for Topic Mining, which has been shown to offer significant advantages over traditional methods like Latent Dirichlet Allocation (LDA), particularly in terms of its high modularity, which allows for extensive personalization at each stage of the topic modeling process. In this study, we hypothesize that BERTopic, when optimized for Twitter data, can provide a more coherent and stable topic modeling. We began by conducting a review of the literature on topic-mining approaches for short-text data. Using this knowledge, we explored the potential for optimizing BERTopic and analyzed its effectiveness. Our focus was on Twitter data spanning the two years of the 117th US Congress. We evaluated BERTopic's performance using coherence, perplexity, diversity, and stability scores, finding significant improvements over traditional methods and the default parameters for this tool. We discovered that improvements are possible in BERTopic's coherence and stability. We also identified the major topics of this Congress, which include abortion, student debt, and Judge Ketanji Brown Jackson. Additionally, we describe a simple application we developed for a better visualization of Congress topics.

2024

Comparing Semantic Graph Representations of Source Code: The Case of Automatic Feedback on Programming Assignments

Autores
Paiva, JC; Leal, JP; Figueira, A;

Publicação
COMPUTER SCIENCE AND INFORMATION SYSTEMS

Abstract
Static source code analysis techniques are gaining relevance in automated assessment of programming assignments as they can provide less rigorous evaluation and more comprehensive and formative feedback. These techniques focus on source code aspects rather than requiring effective code execution. To this end, syntactic and semantic information encoded in textual data is typically represented internally as graphs, after parsing and other preprocessing stages. Static automated assessment techniques, therefore, draw inferences from intermediate representations to determine the correctness of a solution and derive feedback. Consequently, achieving the most effective semantic graph representation of source code for the specific task is critical, impacting both techniques' accuracy, outcome, and execution time. This paper aims to provide a thorough comparison of the most widespread semantic graph representations for the automated assessment of programming assignments, including usage examples, facets, and costs for each of these representations. A benchmark has been conducted to assess their cost using the Abstract Syntax Tree (AST) as a baseline. The results demonstrate that the Code Property Graph (CPG) is the most feature -rich representation, but also the largest and most space -consuming (about 33% more than AST).

2024

GANs in the Panorama of Synthetic Data Generation Methods

Autores
Vaz, B; Figueira, Á;

Publicação
ACM Transactions on Multimedia Computing, Communications, and Applications

Abstract
This paper focuses on the creation and evaluation of synthetic data to address the challenges of imbalanced datasets in machine learning applications (ML), using fake news detection as a case study. We conducted a thorough literature review on generative adversarial networks (GANs) for tabular data, synthetic data generation methods, and synthetic data quality assessment. By augmenting a public news dataset with synthetic data generated by different GAN architectures, we demonstrate the potential of synthetic data to improve ML models’ performance in fake news detection. Our results show a significant improvement in classification performance, especially in the underrepresented class. We also modify and extend a data usage approach to evaluate the quality of synthetic data and investigate the relationship between synthetic data quality and data augmentation performance in classification tasks. We found a positive correlation between synthetic data quality and performance in the underrepresented class, highlighting the importance of high-quality synthetic data for effective data augmentation.

2024

Clustering source code from automated assessment of programming assignments

Autores
Paiva, JC; Leal, JP; Figueira, A;

Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
Clustering of source code is a technique that can help improve feedback in automated program assessment. Grouping code submissions that contain similar mistakes can, for instance, facilitate the identification of students' difficulties to provide targeted feedback. Moreover, solutions with similar functionality but possibly different coding styles or progress levels can allow personalized feedback to students stuck at some point based on a more developed source code or even detect potential cases of plagiarism. However, existing clustering approaches for source code are mostly inadequate for automated feedback generation or assessment systems in programming education. They either give too much emphasis to syntactical program features, rely on expensive computations over pairs of programs, or require previously collected data. This paper introduces an online approach and implemented tool-AsanasCluster-to cluster source code submissions to programming assignments. The proposed approach relies on program attributes extracted from semantic graph representations of source code, including control and data flow features. The obtained feature vector values are fed into an incremental k-means model. Such a model aims to determine the closest cluster of solutions, as they enter the system, timely, considering clustering is an intermediate step for feedback generation in automated assessment. We have conducted a twofold evaluation of the tool to assess (1) its runtime performance and (2) its precision in separating different algorithmic strategies. To this end, we have applied our clustering approach on a public dataset of real submissions from undergraduate students to programming assignments, measuring the runtimes for the distinct tasks involved: building a model, identifying the closest cluster to a new observation, and recalculating partitions. As for the precision, we partition two groups of programs collected from GitHub. One group contains implementations of two searching algorithms, while the other has implementations of several sorting algorithms. AsanasCluster matches and, in some cases, improves the state-of-the-art clustering tools in terms of runtime performance and precision in identifying different algorithmic strategies. It does so without requiring the execution of the code. Moreover, it is able to start the clustering process from a dataset with only two submissions and continuously partition the observations as they enter the system.

Teses
supervisionadas

2023

Analysis of Higher Education Institutions' Social Media Posting Using NLP Techniques

Autor
Lirielly Ruela Vitorugo Nascimento

Instituição
UP-FCUP

2023

Reasoning on Semantic Representations of Source Code to Support Programming Education

Autor
José Carlos Costa Paiva

Instituição
UP-FCUP

2023

Predictive Geovisual Analytics, using data streams fusion, for Risk Monitoring and Early Warning Systems optimization

Autor
Pedro Miguel Tavares da Silva Gonçalves

Instituição
UP-FCUP

2023

Dashboard NLP para análise de obras literárias

Autor
Arina de Jesus Amador Monteiro Sanches

Instituição
UP-FCUP

2023

Imbalanced MultiClass Classification with Concept Drift

Autor
José Gabriel Moreira Pinto

Instituição
UP-FCUP