Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Ana F. Sequeira é licenciada em Matemática, desde 2002, Mestre em Engenharia Matemática, desde 2007, pela Faculdade de Ciências e doutorada em Engenharia e Eletrotécnica e de Computadores, desde 2015, pela Faculdade de Engenharia, ambas as faculdades da Universidade do Porto.

Ana F. Sequeira colaborou com o INESC TEC como investigadora durante o seu doutoramento que visou as áreas de visão computacional e "machine learning" com foco em metodologias de detecção de vivacidade em íris e impressão digital.

Após a conclusão do doutoramento, Ana F. Sequeira colaborou na Universidade de Reading, UK, em dois projectos europeus relacionados com a aplicação de reconhecimento biométrico em controlo de fronteiras (FASTPASS e PROTECT).

A esta actividade seguiu-se uma colaboração a curto-prazo com a empresa Irisguard UK com o objectivo de pesquisar vulnerabilidades do produto EyePay® e desenvolver um protótipo de uma medida de protecção contra “spoofing attacks”.

Actualmente, Ana F. Sequeira colabora novamente com o INESC TEC como investigadora contratado.

Enquanto doutoranda e pós-doc, desde 2011, Ana F. Sequeira é coautora de vários artigos incluindo conferencias internacionais e revistas reconhecidas pela comunidade por citações; assim como liderou a criação de bases de dados e organização de eventos como competições e eventos.

Ao longo da sua actividade de investigação Ana F. Sequeira adquiriu vasta experiência não apenas em tópicos de visão computacional/processamento de imagem mas também na aplicação de técnicas diversificadas de “machine learning”, desde as metodologias clássicas até as de “deep learning”.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Ana Filipa Sequeira
  • Cargo

    Responsável de Área
  • Desde

    23 fevereiro 2011
003
Publicações

2025

Model compression techniques in biometrics applications: A survey

Autores
Caldeira, E; Neto, PC; Huber, M; Damer, N; Sequeira, AF;

Publicação
INFORMATION FUSION

Abstract
The development of deep learning algorithms has extensively empowered humanity's task automatization capacity. However, the huge improvement in the performance of these models is highly correlated with their increasing level of complexity, limiting their usefulness in human-oriented applications, which are usually deployed in resource-constrained devices. This led to the development of compression techniques that drastically reduce the computational and memory costs of deep learning models without significant performance degradation. These compressed models are especially essential when implementing multi-model fusion solutions where multiple models are required to operate simultaneously. This paper aims to systematize the current literature on this topic by presenting a comprehensive survey of model compression techniques in biometrics applications, namely quantization, knowledge distillation and pruning. We conduct a critical analysis of the comparative value of these techniques, focusing on their advantages and disadvantages and presenting suggestions for future work directions that can potentially improve the current methods. Additionally, we discuss and analyze the link between model bias and model compression, highlighting the need to direct compression research toward model fairness in future works.

2024

Massively Annotated Datasets for Assessment of Synthetic and Real Data in Face Recognition

Autores
Neto, PC; Mamede, RM; Albuquerque, C; Gonçalves, T; Sequeira, AF;

Publicação
2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024

Abstract
Face recognition applications have grown in parallel with the size of datasets, complexity of deep learning models and computational power. However, while deep learning models evolve to become more capable and computational power keeps increasing, the datasets available are being retracted and removed from public access. Privacy and ethical concerns are relevant topics within these domains. Through generative artificial intelligence, researchers have put efforts into the development of completely synthetic datasets that can be used to train face recognition systems. Nonetheless, the recent advances have not been sufficient to achieve performance comparable to the state-of-the-art models trained on real data. To study the drift between the performance of models trained on real and synthetic datasets, we leverage a massive attribute classifier (MAC) to create annotations for four datasets: two real and two synthetic. From these annotations, we conduct studies on the distribution of each attribute within all four datasets. Additionally, we further inspect the differences between real and synthetic datasets on the attribute set. When comparing through the Kullback-Leibler divergence we have found differences between real and synthetic samples. Interestingly enough, we have verified that while real samples suffice to explain the synthetic distribution, the opposite could not be further from being true.

2024

MST-KD: Multiple Specialized Teachers Knowledge Distillation for Fair Face Recognition

Autores
Caldeira, E; Cardoso, JS; Sequeira, AF; Neto, PC;

Publicação
CoRR

Abstract

2024

Fairness Under Cover: Evaluating the Impact of Occlusions on Demographic Bias in Facial Recognition

Autores
Mamede, RM; Neto, PC; Sequeira, AF;

Publicação
CoRR

Abstract

2024

How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition

Autores
Neto, PC; Colakovic, I; Karakatic, S; Sequeira, AF;

Publicação
CoRR

Abstract

Teses
supervisionadas

2023

Don’t look away! Keeping the human in the loop with an interactive active learning platform

Autor
Fábio Manuel Taveira da Cunha

Instituição

2023

Explainable Artificial Intelligence – Detecting biases for Interpretable and Fair Face Recognition Deep Learning Models

Autor
Ana Dias Teixeira de Viseu Cardoso

Instituição

2021

Explainable and Interpretable Face Presentation Attack Detection Methods

Autor
Murilo Leite Nóbrega

Instituição

2021

Deep Learning Face Emotion Recognition

Autor
Pedro Duarte Lopes

Instituição

2020

Fingerprint Anti Spoofing – Domain Adaptation and Adversarial Learning

Autor
João Afonso Pinto Pereira

Instituição