Detalhes
Nome
André DiasCargo
Investigador SéniorDesde
01 outubro 2011
Nacionalidade
PortugalCentro
Centro de Robótica e Sistemas AutónomosContactos
+351228340554
andre.dias@inesctec.pt
2024
Autores
Loureiro, G; Dias, A; Almeida, J; Martins, A; Hong, SP; Silva, E;
Publicação
REMOTE SENSING
Abstract
The deep seabed is composed of heterogeneous ecosystems, containing diverse habitats for marine life. Consequently, understanding the geological and ecological characteristics of the seabed's features is a key step for many applications. The majority of approaches commonly use optical and acoustic sensors to address these tasks; however, each sensor has limitations associated with the underwater environment. This paper presents a survey of the main techniques and trends related to seabed characterization, highlighting approaches in three tasks: classification, detection, and segmentation. The bibliography is categorized into four approaches: statistics-based, classical machine learning, deep learning, and object-based image analysis. The differences between the techniques are presented, and the main challenges for deep sea research and potential directions of study are outlined.
2024
Autores
Dias, A; Mucha, A; Santos, T; Oliveira, A; Amaral, G; Ferreira, H; Martins, A; Almeida, J; Silva, E;
Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
This paper presents the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). This solution is based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be applied as the first line of the response to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or in the open sea during transport activities in a fast, efficient, and low-cost way. The paper describes the work done in the development of a team of autonomous vehicles able to carry as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), and the development of a multi-robot framework for efficient oil spill mitigation. Field tests have been performed in Portugal and Spain's harbors, with a simulated oil spill, and the coordinate oil spill task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV) STORK has been validated.
2024
Autores
Minhoto, V; Santos, T; Silva, LTE; Rodrigues, P; Arrais, A; Amaral, A; Dias, A; Almeida, J; Cunha, JPS;
Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Over the last few years, Man-Machine collaborative systems have been increasingly present in daily routines. In these systems, one operator usually controls the machine through explicit commands and assesses the information through a graphical user interface. Direct & implicit interaction between the machine and the user does not exist. This work presents a man-machine symbiotic concept & system where such implicit interaction is possible targeting search and rescue scenarios. Based on measuring physiological variables (e.g. body movement or electrocardiogram) through wearable devices, this system is capable of computing the psycho-physiological state of the human and autonomously identify abnormal situations (e.g. fall or stress). This information is injected into the control loop of the machine that can alter its behavior according to it, enabling an implicit man-machine communication mechanism. A proof of concept of this system was tested at the ARTEX (ARmy Technological EXperimentation) exercise organized by the Portuguese Army involving a military agent and a drone. During this event the soldier was equipped with a kit of wearables that could monitor several physiological variables and automatically detect a fall during a mission. This information was continuously sent to the drone that successfully identified this abnormal situation triggering the take-off and a situation awareness fly-by flight pattern, delivering a first-aid kit to the soldier in case he did not recover after a pre-determined time period. The results were very positive, proving the possibility and feasibility of a symbiotic system between humans and machines.
2024
Autores
Morais, R; Martins, JJ; Lima, P; Dias, A; Martins, A; Almeida, J; Silva, E;
Publicação
OCEANS 2024 - SINGAPORE
Abstract
Solar energy will contribute to global economic growth, increasing worldwide photovoltaic (PV) solar energy production. More recently, one of the outstanding energy achievements of the last decade has been the development of floating photovoltaic panels. These panels differ from conventional (terrestrial) panels because they occupy space in a more environmentally friendly way, i.e., aquatic areas. In contrast, land areas are saved for other applications, such as construction or agriculture. Developing autonomous inspection systems using unmanned aerial vehicles (UAVs) represents a significant step forward in solar PV technology. Given the frequently remote and difficult-to-access locations, traditional inspection methods are no longer practical or suitable. Responding to these challenges, an innovative inspection framework was developed to autonomously inspect photovoltaic plants (offshore) with a Vertical Takeoff and Landing (VTOL) UAV. This work explores two different methods of autonomous aerial inspection, each adapted to specific scenarios, thus increasing the adaptability of the inspection process. During the flight, the aerial images are evaluated in real-time for the autonomous detection of the photovoltaic modules and the detection of possible faults. This mechanism is crucial for making decisions and taking immediate corrective action. An offshore simulation environment was developed to validate the implemented system.
2024
Autores
Santos, T; Cunha, T; Dias, A; Moreira, AP; Almeida, J;
Publicação
SENSORS
Abstract
Inspecting and maintaining power lines is essential for ensuring the safety, reliability, and efficiency of electrical infrastructure. This process involves regular assessment to identify hazards such as damaged wires, corrosion, or vegetation encroachment, followed by timely maintenance to prevent accidents and power outages. By conducting routine inspections and maintenance, utilities can comply with regulations, enhance operational efficiency, and extend the lifespan of power lines and equipment. Unmanned Aerial Vehicles (UAVs) can play a relevant role in this process by increasing efficiency through rapid coverage of large areas and access to difficult-to-reach locations, enhanced safety by minimizing risks to personnel in hazardous environments, and cost-effectiveness compared to traditional methods. UAVs equipped with sensors such as visual and thermographic cameras enable the accurate collection of high-resolution data, facilitating early detection of defects and other potential issues. To ensure the safety of the autonomous inspection process, UAVs must be capable of performing onboard processing, particularly for detection of power lines and obstacles. In this paper, we address the development of a deep learning approach with YOLOv8 for power line detection based on visual and thermographic images. The developed solution was validated with a UAV during a power line inspection mission, obtaining mAP@0.5 results of over 90.5% on visible images and over 96.9% on thermographic images.
Teses supervisionadas
2023
Autor
MIGUEL FONSECA GONÇALVES
Instituição
IPP-ISEP
2023
Autor
JOÃO GABRIEL DE SOUSA MOREIRA
Instituição
IPP-ISEP
2023
Autor
SARA RAQUEL MONTEIRO DA SILVA PEREIRA
Instituição
IPP-ISEP
2023
Autor
JOSÉ MIGUEL PINHO SOARES
Instituição
IPP-ISEP
2023
Autor
RICARDO ANDRÉ ANES MORAIS
Instituição
IPP-ISEP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.