Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Aníbal Matos concluiu o doutoramento em Engenharia Electrotécnica e de Computadores pela Universidade do Porto em 2001. É atualmente professor associado na Faculdade de Engenharia da Universidade do Porto e membro do Conselho de Administração do INESC TEC. Os seus principais interesses de investigação são perceção, navegação e controlo de veículos robóticos aquáticos, sendo autor ou coautor de mais de 80 publicações em revistas e conferências internacionais. Tem participado e liderado projetos de investigação em robótica aquática e nas suas aplicações em monitorização, inspeção, busca e salvamento e defesa.

Detalhes

Detalhes

  • Nome

    Aníbal Matos
  • Cargo

    Administrador Executivo
  • Desde

    01 junho 2009
026
Publicações

2025

Real-Time Registration of 3D Underwater Sonar Scans

Autores
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publicação
ROBOTICS

Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.

2024

Predicting weight dispersion in seabass aquaculture using Discrete Event System simulation and Machine Learning modeling

Autores
Navarro, LC; Azevedo, A; Matos, A; Rocha, A; Ozorio, R;

Publicação
AQUACULTURE REPORTS

Abstract
Marine aquaculture, particularly in the Mediterranean region, faces the challenge of minimizing growth dispersion, which has a direct impact on the production cycle, market value and sustainability of the sector. Conventional grading methods are resource intensive and potentially detrimental to fish health. The current study presented an innovative approach in predicting fish weight dispersion in European seabass (Dicentrarchus labrax) aquaculture. Seabass is one of the two major fish species cultivated on the Mediterranean coast, with a fattening cycle of 18-24 months. During this period, several grading operations are carried out to minimize growth dispersion. The intricate feed-fish-water system, characterized by complex interactions among feeding regimes, fish behavior, individual metabolism and environmental factors, is the focus of the study. The comprehensive, five-step methodology addresses this complexity. The process begins with a Discrete Event System (DES) model that simulates the feed-fish-water dynamics, taking into account individual fish metabolism. This is followed by the development of a surrogate machine learning (ML) regressor model, which is trained on DES simulation data to efficiently predict growth distribution. The model is then calibrated and customized for specific fish stocks and production tanks. The preliminary results from 21 tanks in two trials with European seabass (D. labrax) showed the effectiveness of the method. The results from the simulation models achieved a R2 of 99.9 % and a Mean Absolute Percentage Error (MAPE) of 1.1 % for the prediction of mean final weight and a R2 of 90.3 % with a MAPE of 8.1 % for the standard deviation of final weight. In summary, this study represents a significant advance in the planning and management of seabass aquaculture. Given the lack of effective prediction tools in the aquaculture industry, the proposed methodology has the potential to reduce risks and inefficiencies, thus possibly optimizing aquaculture practices by increasing sustainability and profitability.

2023

Limit Characterization for Visual Place Recognition in Underwater Scenes

Autores
Gaspar, AR; Nunes, A; Matos, A;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
The underwater environment has some structures that still need regular inspection. However, the nature of this environment presents a number of challenges in achieving accurate vehicle position and consequently successful image similarity detection. Although there are some factors - water turbidity or light attenuation - that degrade the quality of the captured images, visual sensors have shown a strong impact on mission scenarios - close range operations. Therefore, the purpose of this paper is to study whether these data are capable of addressing the aforementioned underwater challenges on their own. Considering the lack of available data in this context, a typical underwater scenario was recreated using the Stonefish simulator. Experiments were conducted on two predefined trajectories containing appearance scene changes. The loop closure situations provided by the bag-of-words (BoW) approach are correctly detected, but it is sensitive to some severe conditions.

2023

Labelled Indoor Point Cloud Dataset for BIM Related Applications

Autores
Abreu, N; Souza, R; Pinto, A; Matos, A; Pires, M;

Publicação
DATA

Abstract
BIM (building information modelling) has gained wider acceptance in the AEC (architecture, engineering, and construction) industry. Conversion from 3D point cloud data to vector BIM data remains a challenging and labour-intensive process, but particularly relevant during various stages of a project lifecycle. While the challenges associated with processing very large 3D point cloud datasets are widely known, there is a pressing need for intelligent geometric feature extraction and reconstruction algorithms for automated point cloud processing. Compared to outdoor scene reconstruction, indoor scenes are challenging since they usually contain high amounts of clutter. This dataset comprises the indoor point cloud obtained by scanning four different rooms (including a hallway): two office workspaces, a workshop, and a laboratory including a water tank. The scanned space is located at the Electrical and Computer Engineering department of the Faculty of Engineering of the University of Porto. The dataset is fully labelled, containing major structural elements like walls, floor, ceiling, windows, and doors, as well as furniture, movable objects, clutter, and scanning noise. The dataset also contains an as-built BIM that can be used as a reference, making it suitable for being used in Scan-to-BIM and Scan-vs-BIM applications. For demonstration purposes, a Scan-vs-BIM change detection application is described, detailing each of the main data processing steps. Dataset: https://doi.org/10.5281/zenodo.7948116 Dataset License: Creative Commons Attribution 4.0 International License (CC BY 4.0).

2023

Construction progress monitoring - A virtual reality based platform

Autores
Abreu, N; Pinto, A; Matos, A; Pires, M;

Publicação
Iberian Conference on Information Systems and Technologies, CISTI

Abstract
Precise construction progress monitoring has been shown to be an essential step towards the successful management of a building project. However, the methods for automated construction progress monitoring proposed in previous work have certain limitations because of inefficient and unrobust point cloud processing. The main objective of this research was to develop an accurate automated method for construction progress monitoring using a 4D BIM together with a 3D point cloud obtained using a terrestrial laser scanner. The proposed method consists of four phases: point cloud simplification, alignment of the as-built data with the as-planned model, classification of the as-built data according to the BIM elements, and estimation of the progress. The accuracy and robustness of the proposed methodology was validated using a known dataset. The developed application can be used for construction progress visualization and analysis. © 2023 ITMA.

Teses
supervisionadas

2023

Coordinated Control of Autonomous Underwater Vehicles

Autor
Matilde Silva Conde

Instituição
UP-FEUP

2023

Localization and control of underwater vehicles in confined environments

Autor
Pedro Manuel Vieira Ramadas

Instituição
UP-FEUP

2023

Underwater Reconstruction and Object Recognition

Autor
Alexandra Pereira Nunes

Instituição
UP-FEUP

2023

Close-Range Localisation for Inspection of Underwater Structures

Autor
Ana Rita da Silva Gaspar

Instituição
UP-FEUP

2023

Multi-domain Contextual Awareness using Unmanned Surface Vehicles for Offshore Wind Farms Inspection

Autor
Daniel Filipe Barros Campos

Instituição
UP-FEUP