Detalhes
Nome
João Manuel DionísioCargo
Assistente de InvestigaçãoDesde
21 fevereiro 2022
Nacionalidade
PortugalCentro
Centro de Robótica e Sistemas AutónomosContactos
+351220413233
joao.m.dionisio@inesctec.pt
2024
Autores
Leite, PN; Pereira, PN; Dionisío, JMM; Pinto, AM;
Publicação
OCEAN ENGINEERING
Abstract
Offshore wind farms face harsh maritime conditions, prompting the use of sacrificial anodes to prevent rapid structural degradation. Regular maintenance and replacement of these elements are vital to ensure ongoing corrosion protection, maintain structural integrity, and optimize efficiency. This article details the design and validation of the MARESye hybrid underwater imaging system, capable of retrieving heterogeneous tri-dimensional information with millimetric precision for the close-range inspection of submerged critical structures. The optical prowess of the system is first validated during low turbidity trials where the volumetric properties of a decommissioned anode are reconstructed with absolute errors down to 0.0008 m, and its spatial dimensions are depicted with sub-millimeter precision accounting for relative errors as low as 0.31%. MARESye is later equipped as payload in a commercial ROV during areal environment inspection mission at the ATLANTIS Coastal Test Center. This experiment sees the sensor provide live reconstructions of a sacrificial anode, revealing a biofouling layer of approximately 0.0130 m thickness. The assessment of the high-fidelity 2D/3D information obtained from the MARESye sensor demonstrates its potential to enhance the situational awareness of underwater vehicles, fostering reliable O&M procedures.
2023
Autores
Dionisio, JMM; Pereira, PNAAS; Leite, PN; Neves, FS; Tavares, JMRS; Pinto, AM;
Publicação
OCEANS 2023 - LIMERICK
Abstract
Structures associated with offshore wind energy production require an arduous and cyclical inspection and maintenance (O&M) procedure. Moreover, the harsh challenges introduced by sub-sea phenomena hamper visibility, considerably affecting underwater missions. The lack of quality 3D information within these environments hinders the applicability of autonomous solutions in close-range navigation, fault inspection and intervention tasks since these have a very poor perception of the surrounding space. Deep learning techniques are widely used to solve these challenges in aerial scenarios. The developments in this subject are limited regarding underwater environments due to the lack of publicly disseminated underwater information. This article presents a new underwater dataset: NEREON, containing both 2D and 3D data gathered within real underwater environments at the ATLANTIS Coastal Test Centre. This dataset is adequate for monocular depth estimation tasks, which can provide useful information during O&M missions. With this in mind, a benchmark comparing different deep learning approaches in the literature was conducted and presented along with the NEREON dataset.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.