Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

José Boaventura-Cunha é Engenheiro em Eletrónica e Telecomunicações pela Universidade de Aveiro (1985) e Doutorado em Engenharia Electrotécnica e de Computadores pela UTAD-Universidade de Trás-os-Montes e Alto Douro, Portugal (2002). Atualmente exerce funções de Professor Associado com Agregação na Escola de Ciências e Tecnologia da UTAD.

Desde 2012 é membro do CRIIS- Centre for Robotics in Industry and Intelligent Systems no INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência e é Coordenador do polo INESC TEC na UTAD.

Os seus interesses de investigação relacionam-se com as áreas de Instrumentação, modelação e controlo aplicados a processos industriais e agro-florestais.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    José Boaventura
  • Cargo

    Investigador Coordenador
  • Desde

    01 junho 2012
014
Publicações

2024

Precision Fertilization: A critical review analysis on sensing technologies for nitrogen, phosphorous and potassium quantification

Autores
Silva, FM; Queiros, C; Pereira, M; Pinho, T; Barroso, T; Magalhaes, S; Boaventura, J; Santos, F; Cunha, M; Martins, RC;

Publicação
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Fertilization is paramount for agriculture productivity and food security. Plant nutrition pre-established recipes and nutrient uptake are rarely managed by changing the fertilizer composition at the different stages of the plant life cycle. Herein we perform a literature review analysis - since the year 2000 and onwards - of the state-of-the-art capabilities of Nitrogen, Phosphorous, and Potassium (NPK) sensors for liquid fertilizers ( e.g. , hydroponics). From the initial search hits of 1660 results, only 53 publications had relevant information for this topic; from these, only 9 had NPK quantitative information. Qualitative analysis was performed by determining the number of publications for each nutrient, according to sample complexity and existing single, multiplexed or hybrid technologies. Quantitative assessment was performed by extracting the bias and linearity, the limit of detection and concentration ranges of sensor operation, framed into the context of the sensor technology development stage and sample compositional complexity. The most common technologies are colorimetry, ionselective electrodes, optrodes, chemosensors, and optical spectroscopy. The most abundant technologies are for nitrate quantification, from which ion-selective electrodes are the most widely used technology, and sensors for phosphate quantification are the less developed. Most are at low technological levels of development, not dealing with the complexity of agriculture samples due to matrix effects and interference. Measuring the fertilizer composition, nutrient uptake, the state of the chemical network, and controlling the release of nutrients using new functional materials, is one of the most important challenges ahead for the existence of precision fertilization. Intelligent sensing and smart materials are today the most successful strategy for dealing with matrix effects and interferences, being led by ion-selective electrodes and spectroscopy technologies.

2023

2D LiDAR-Based System for Canopy Sensing in Smart Spraying Applications

Autores
Baltazar, AR; Dos Santos, FN; De Sousa, ML; Moreira, AP; Cunha, JB;

Publicação
IEEE ACCESS

Abstract
The efficient application of phytochemical products in agriculture is a complex issue that demands optimised sprayers and variable rate technologies, which rely on advanced sensing systems to address challenges such as overdosage and product losses. This work developed a system capable of processing different tree canopy parameters to support precision fruit farming and environmental protection using intelligent spraying methodologies. This system is based on a 2D light detection and ranging (LiDAR) sensor and a Global Navigation Satellite System (GNSS) receiver integrated into a sprayer driven by a tractor. The algorithm detects the canopy boundaries, allowing spray only in the presence of vegetation. The spray volume spared evaluates the system's performance compared to a Tree Row Volume (TRV) methodology. The results showed a 28% reduction in the overdosage of spraying product. The second step in this work was calculating and adjusting the amount of liquid to apply based on the tree volume. Considering this parameter, the saving obtained had an average value for the right and left rows of 78%. The volume of the trees was also monitored in a georeferenced manner with the creation of a occupation grid map. This map recorded the trajectory of the sprayer and the detected trees according to their volume.

2023

Reagent-less spectroscopy towards NPK sensing for hydroponics nutrient solutions

Autores
Silva, FM; Queirós, C; Pinho, T; Boaventura, J; Santos, F; Barroso, TG; Pereira, MR; Cunha, M; Martins, RC;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
Nutrient quantification in hydroponic systems is essential. Reagent-less spectral quantification of nitrogen, phosphate and potassium faces challenges in accessing information-rich spectral signals and unscrambling interference from each constituent. Herein, we introduce information equivalence between spectra and sample composition, enabling extraction of consistent covariance to isolate nutrient-specific spectral information (N, P or K) in Hoagland nutrient solutions using orthogonal covariance modes. Chemometrics methods quantify nitrogen and potassium, but not phosphate. Orthogonal covariance modes, however, enable quantification of all three nutrients: nitrogen (N) with R = 0.9926 and standard error of 17.22 ppm, phosphate (P) with R = 0.9196 and standard error of 63.62 ppm, and potassium (K) with R = 0.9975 and standard error of 9.51 ppm. Including pH information significantly improves phosphate quantification (R = 0.9638, standard error: 43.16 ppm). Results demonstrate a direct relationship between spectra and Hoagland nutrient solution information, preserving NPK orthogonality and supporting orthogonal covariance modes. These modes enhance detection sensitivity by maximizing information of the constituent being quantified, while minimizing interferences from others. Orthogonal covariance modes predicted nitrogen (R = 0.9474, standard error: 29.95 ppm) accurately. Phosphate and potassium showed strong interference from contaminants, but most extrapolation samples were correctly diagnosed above the reference interval (83.26%). Despite potassium features outside the knowledge base, a significant correlation was obtained (R = 0.6751). Orthogonal covariance modes use unique N, P or K information for quantification, not spurious correlations due to fertilizer composition. This approach minimizes interferences during extrapolation to complex samples, a crucial step towards resilient nutrient management in hydroponics using spectroscopy.

2023

Application of Bio-Inspired Optimization Techniques for Wind Power Forecasting

Autores
Ferreira, J; Puga, R; Boaventura, J; Abtahi, A; Santos, S;

Publicação
International Journal of Computer Information Systems and Industrial Management Applications

Abstract
As the need for replacing fossil and other non-renewable energy sources with renewables becomes more critical and urgent, wind energy appears to be among the two or three best choices for the short and medium time frames. The dominance of wind energy as the first choice in many regions, leads to an increasing impact of wind power quality on the overall grid. Wind energy’s inherent intermittent nature, both in intensity and longevity, could be an impediment to its adoption unless utility operators have the tools to anticipate the impact and integrate wind resources seamlessly by increasing or reducing its contribution to the overall capacity of the grid. The wind forecasting science is well established and has been the subject of serious study in multiple fields such as fluid dynamics, statistical analysis and numerical simulation and modeling. With the renewed interest and dependence on wind as a major energy source, these efforts have increased exponentially. One of the areas that shows great promise in developing improved forecasting tools, is the category of “Biological Inspired Optimization Techniques. The study presented in this paper is the result of a study to survey and assess an array of forecasting models and algorithms. © MIR Labs, www.mirlabs.net/ijcisim/index.html

2023

Sound-Based Anomalies Detection in Agricultural Robotics Application

Autores
Baltazar, AR; dos Santos, FN; Soares, SP; Moreira, AP; Cunha, JB;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Agricultural robots are exposed to adverse conditions reducing the components' lifetime. To reduce the number of inspection, repair and maintenance activities, we propose using audio-based systems to diagnose and detect anomalies in these robots. Audio-based systems are non-destructive/intrusive solutions. Besides, it provides a significant amount of data to diagnose problems and for a wiser scheduler for preventive activities. So, in this work, we installed two microphones in an agricultural robot with a mowing tool. Real audio data was collected with the robotic mowing tool operating in several conditions and stages. Besides, a Sound-based Anomalies Detector (SAD) is proposed and tested with this dataset. The SAD considers a short-time Fourier transform (STFT) computation stage connected to a Support Vector Machine (SVM) classifier. The results with the collected dataset showed an F1 score between 95% and 100% in detecting anomalies in a mowing robot operation.

Teses
supervisionadas

2023

Sistema autónomo para reaproveitamento de águas quentes do banho

Autor
Luís Miguel Sampaio Sanches Ferreira

Instituição
UTAD

2023

Localization and Mapping Based on Semantic and Multi-layer Maps Concepts

Autor
André Silva Pinto de Aguiar

Instituição
UTAD

2023

Planejamentode preensão adaptável: uma nova arquitetura de Pipeline de agarramento unificado e modular

Autor
João Pedro Carvalho de Souza

Instituição
UTAD

2023

Adaptive Grasping Planning: A Novel Unified and Modular Grasping Pipeline Architecture

Autor
João Pedro Carvalho de Souza

Instituição
UTAD

2022

Localization and Mapping Based on Semantic and Multi-layer Maps Concepts

Autor
André Silva Pinto de Aguiar

Instituição
UTAD