Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Luís Paulo Peixoto dos Santos é actualmente Professor Auxiliar do Departamento de Informática, Universidade do Minho e investigador do CSIG, INESC-TEC. A sua área de investigação é a Iluminação Global, com especial ênfase no desempenho dos algortimos e o recurso à Computação Paralela Heterogénea (CPU + GPU + Knights Landing) para diminuir o tempo de convergência para soluções perceptualmente correctas. Publicou algumas dezenas de artigos nos mais prestigiados fóruns internacionais (conferências e revistas) desta área do cohecimento, sendo tambem autor de um livro em Bayesian Monte Carlo Rendering. Integra a Comissão de Programa de várias conferências internacionais, tendo presidido a algumas destas comissões e organizado 6 conferências em Portugal.

Foi Vice-Director do Departamento de Informática, Vice-Director da Licenciatura em Engenharia Informática, bem como do Mestrado em Engenhraia Informática. Foi Director do Programa Doutoral em Engenharia Informática. Integrou a Comissão designada por iniciativa reitoral para coordenar a instalação da Unidade Operacional em Governação Electrónica da Universidade das Nações Unidas em Portugal, especificamente no Campus de Couros da Universidade do Minho, Guimarães, integrando actualmente o corpo directivo da unidade EGOV-UM que assegura o interface entre as duas instituições.  

É Editor Associado da revista Computers & Graphics e Presidente da Direcção do Grupo Português de Computação Gráfica (secção portuguesa da Eurographics) para o biénio 2017-2018.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Luís Paulo Santos
  • Cargo

    Investigador Sénior
  • Desde

    01 janeiro 2017
Publicações

2024

On Quantum Natural Policy Gradients

Autores
Sequeira, A; Santos, LP; Barbosa, LS;

Publicação
IEEE TRANSACTIONS ON QUANTUM ENGINEERING

Abstract
This article delves into the role of the quantum Fisher information matrix (FIM) in enhancing the performance of parameterized quantum circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov decision processes, is less clear. Through a detailed analysis of L & ouml;wner inequalities between quantum and classical FIMs, this study uncovers the nuanced distinctions and implications of using each type of FIM. Our results indicate that a PQC-based agent using the quantum FIM without additional insights typically incurs a larger approximation error and does not guarantee improved performance compared to the classical FIM. Empirical evaluations in classic control benchmarks suggest even though quantum FIM preconditioning outperforms standard gradient ascent, in general, it is not superior to classical FIM preconditioning.

2024

VQC-based reinforcement learning with data re-uploading: performance and trainability

Autores
Coelho, R; Sequeira, A; Santos, LP;

Publicação
QUANTUM MACHINE INTELLIGENCE

Abstract
Reinforcement learning (RL) consists of designing agents that make intelligent decisions without human supervision. When used alongside function approximators such as Neural Networks (NNs), RL is capable of solving extremely complex problems. Deep Q-Learning, a RL algorithm that uses Deep NNs, has been shown to achieve super-human performance in game-related tasks. Nonetheless, it is also possible to use Variational Quantum Circuits (VQCs) as function approximators in RL algorithms. This work empirically studies the performance and trainability of such VQC-based Deep Q-Learning models in classic control benchmark environments. More specifically, we research how data re-uploading affects both these metrics. We show that the magnitude and the variance of the model's gradients remain substantial throughout training even as the number of qubits increases. In fact, both increase considerably in the training's early stages, when the agent needs to learn the most. They decrease later in the training, when the agent should have done most of the learning and started converging to a policy. Thus, even if the probability of being initialized in a Barren Plateau increases exponentially with system size for Hardware-Efficient ansatzes, these results indicate that the VQC-based Deep Q-Learning models may still be able to find large gradients throughout training, allowing for learning.

2023

Policy gradients using variational quantum circuits

Autores
Sequeira, A; Santos, LP; Barbosa, LS;

Publicação
QUANTUM MACHINE INTELLIGENCE

Abstract
Variational quantum circuits are being used as versatile quantum machine learning models. Some empirical results exhibit an advantage in supervised and generative learning tasks. However, when applied to reinforcement learning, less is known. In this work, we considered a variational quantum circuit composed of a low-depth hardware-efficient ansatz as the parameterized policy of a reinforcement learning agent. We show that an epsilon-approximation of the policy gradient can be obtained using a logarithmic number of samples concerning the total number of parameters. We empirically verify that such quantum models behave similarly to typical classical neural networks used in standard benchmarking environments and quantum control, using only a fraction of the parameters. Moreover, we study the barren plateau phenomenon in quantum policy gradients using the Fisher information matrix spectrum.

2022

Ensemble Metropolis Light Transport

Autores
Bashford Rogers, T; Santos, LP; Marnerides, D; Debattista, K;

Publicação
ACM TRANSACTIONS ON GRAPHICS

Abstract
This article proposes a Markov Chain Monte Carlo (MCMC) rendering algorithm based on a family of guided transition kernels. The kernels exploit properties of ensembles of light transport paths, which are distributed according to the lighting in the scene, and utilize this information to make informed decisions for guiding local path sampling. Critically, our approach does not require caching distributions in world space, saving time and memory, yet it is able to make guided sampling decisions based on whole paths. We show how this can be implemented efficiently by organizing the paths in each ensemble and designing transition kernels for MCMC rendering based on a carefully chosen subset of paths from the ensemble. This algorithm is easy to parallelize and leads to improvements in variance when rendering a variety of scenes.

2022

Foreword to the special section on Recent Advances in Graphics and Interaction

Autores
Rodrigues, N; Mendes, D; Santos, LP; Bouatouch, K;

Publicação
COMPUTERS & GRAPHICS-UK

Abstract

Teses
supervisionadas

2023

Quantum Reinforcement Learning: Foundations, algorithms, applications

Autor
André Manuel Resende Sequeira

Instituição
UM

2023

Algoritmos e aplicações de estimativa de amplitude quântica

Autor
Alexandra Francisco Ramôa da Costa Alves

Instituição
UM

2023

Classification and Clustering using Swap Test as distance metric

Autor
Tomás Rodrigues Alves de Sousa

Instituição
UM

2023

Algoritmos de otimização quântica

Autor
Mafalda Francisco Ramôa da Costa Alves

Instituição
UM

2022

Algoritmos de otimização quântica

Autor
Mafalda Francisco Ramôa da Costa Alves

Instituição
UM