Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Mário Amorim Lopes
  • Cargo

    Investigador Sénior
  • Desde

    01 dezembro 2013
010
Publicações

2025

Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review

Autores
Santos, CS; Amorim-Lopes, M;

Publicação
BMC MEDICAL RESEARCH METHODOLOGY

Abstract
Background This scoping review systematically maps externally validated machine learning (ML)-based models in cancer patient care, quantifying their performance, and clinical utility, and examining relationships between models, cancer types, and clinical decisions. By synthesizing evidence, this study identifies, strengths, limitations, and areas requiring further research. Methods The review followed the Joanna Briggs Institute's methodology, Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines, and the Population, Concept, and Context mnemonic. Searches were conducted across Embase, IEEE Xplore, PubMed, Scopus, and Web of Science (January 2014-September 2022), targeting English-language quantitative studies in Q1 journals (SciMago Journal and Country Ranking > 1) that used ML to evaluate clinical outcomes for human cancer patients with commonly available data. Eligible models required external validation, clinical utility assessment, and performance metric reporting. Studies involving genetics, synthetic patients, plants, or animals were excluded. Results were presented in tabular, graphical, and descriptive form. Results From 4023 deduplicated abstracts and 636 full-text reviews, 56 studies (2018-2022) met the inclusion criteria, covering diverse cancer types and applications. Convolutional neural networks were most prevalent, demonstrating high performance, followed by gradient- and decision tree-based algorithms. Other algorithms, though underrepresented, showed promise. Lung and digestive system cancers were most frequently studied, focusing on diagnosis and outcome predictions. Most studies were retrospective and multi-institutional, primarily using image-based data, followed by text-based and hybrid approaches. Clinical utility assessments involved 499 clinicians and 12 tools, indicating improved clinician performance with AI assistance and superior performance to standard clinical systems. Discussion Interest in ML-based clinical decision-making has grown in recent years alongside increased multi-institutional collaboration. However, small sample sizes likely impacted data quality and generalizability. Persistent challenges include limited international validation across ethnicities, inconsistent data sharing, disparities in validation metrics, and insufficient calibration reporting, hindering model comparison reliability.

2023

Predicting the future: introducing business analytics to endoscopy units

Autores
Pinho, R; Veloso, R; Estevinho, MM; Rodrigues, T; Almada Lobo, B; Amorim Lopes, M; Freitas, T;

Publicação
REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS

Abstract
Background and aims: currently, most endoscopy software only provides limited statistics of past procedures, while none allows patterns to be extrapolated. To overcome this need, the authors applied business analytic models to pre-dict future demand and the need for endoscopists in a ter-tiary hospital Endoscopy Unit. Methods: a query to the endoscopy database was per-formed to retrieve demand from 2015 to 2021. The graphi-cal inspection allowed inferring of trends and seasonality, perceiving the impact of the COVID-19 pandemic, and se-lecting the best forecasting models. Considering COVID-19's impact in the second quarter of 2020, data for esoph-agogastroduodenoscopy (EGD) and colonoscopy was estimated using linear regression of historical data. The actual demand in the first two quarters of 2022 was used to validate the models. Results: during the study period, 53,886 procedures were requested. The best forecasting models were: a) simple sea-sonal exponential smoothing for EGD, colonoscopy and percutaneous endoscopic gastrostomy (PEG); b) double ex-ponential smoothing for capsule endoscopy and deep en-teroscopy; and c) simple exponential smoothing for endo-scopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasound (EUS). The mean average percent-age error ranged from 6.1 % (EGD) to 33.5 % (deep en - teroscopy). Overall, 8,788 procedures were predicted for 2022. The actual demand in the first two quarters of 2022 was within the predicted range. Considering the usual time allocation for each technique, 3.2 full-time equivalent en-doscopists (40 hours-dedication to endoscopy) will be re-quired to perform all procedures in 2022. Conclusions: the incorporation of business analytics into the endoscopy software and clinical practice may enhance resource allocation, improving patient-focused deci-sion-making and healthcare quality.

2023

A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese

Autores
Sousa, H; Pasquali, A; Jorge, A; Santos, CS; Lopes, MA;

Publicação
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023

Abstract
Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved..1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively.

2023

Design participativo e economia solidária: em busca de um co-design possível

Autores
Melezinski, HV; Costa, MF; Amorim, ML; Deina, WJ;

Publicação
Revista Tecnologia e Sociedade

Abstract
Reconhecendo as discussões em andamento no movimento da Economia Popular Solidáriano Brasil e tomando como base a pesquisa desenvolvida com a Rede de padariascomunitárias Fermento na Massa, este artigo conta sobre o retorno das atividades da Redepós Covid-19, a aproximação das pesquisadoras com a Rede e a troca que fizemos entreconhecimentos de design gráfico das pesquisadoras e as experiências como trabalhadorasda Economia Solidária. A partir disso buscamos discutir as relações entre a prática do designe a Economia Solidária, dialogando com os conceitos de design participativo e autogestãona prática da Economia Solidária buscamos refletir sobre as possibilidades de uma práticade um design mais solidário, co-produzido e buscando maior autonomia das trabalhadorasnos processos de comunicação e venda.

2023

Artificial intelligence and the future in health policy, planning and management

Autores
Lopes, MA; Martins, H; Correia, T;

Publicação
INTERNATIONAL JOURNAL OF HEALTH PLANNING AND MANAGEMENT

Abstract
[No abstract available]

Teses
supervisionadas

2023

Unveiling the Gender Disparities in Sickness Benefits: A Comprehensive Analysis of Socioeconomic and Demographic Factors

Autor
João Nuno da Rocha Oliveira Gomes

Instituição
UP-FEUP

2023

Design, requirements gathering, set-up and implementation of a marketing automation platform

Autor
Ana Rita da Silva Oliveira

Instituição
UP-FEUP

2023

Otimização do Portfólio da Farmácia Comunitária : Seleção de Fornecedores e Alocação de Encomendas

Autor
João Paulo Martins Rosa

Instituição
UP-FEUP

2023

Streamlining Weaving Processes: An Analysis of Factors Influencing Breakage Incidents and Downtime Reduction Strategies

Autor
Carolina Branco Gama Ladeira Oliveira

Instituição
UP-FEUP

2023

Integrating Production and Logistics Centre Operations for Enhanced Efficiency in Custom Gates Manufacturing: A Case Study

Autor
Filipa Dias Ramos

Instituição
UP-FEUP