Detalhes
Nome
Nuno Miguel FerreiraCargo
Investigador Colaborador ExternoDesde
01 janeiro 2018
Nacionalidade
PortugalCentro
Centro de Robótica Industrial e Sistemas InteligentesContactos
+351220413317
nuno.m.ferreira@inesctec.pt
2025
Autores
Gameiro, T; Pereira, T; Moghadaspoura, H; Di Giorgio, F; Viegas, C; Ferreira, N; Ferreira, J; Soares, S; Valente, A;
Publicação
ALGORITHMS
Abstract
The autonomous navigation of unmanned ground vehicles (UGVs) in unstructured environments, such as agricultural or forestry settings, has been the subject of extensive research by various investigators. The navigation capability of a UGV in unstructured environments requires considering numerous factors, including the quality of data reception that allows reliable interpretation of what the UGV perceives in a given environment, as well as the use these data to control the UGV's navigation. This article aims to study different PID control algorithms to enable autonomous navigation on a robotic platform. The robotic platform consists of a forestry tractor, used for forest cleaning tasks, which was converted into a UGV through the integration of sensors. Using sensor data, the UGV's position and orientation are obtained and utilized for navigation by inputting these data into a PID control algorithm. The correct choice of PID control algorithm involved the study, analysis, and implementation of different controllers, leading to the conclusion that the Vector Field control algorithm demonstrated better performance compared to the others studied and implemented in this paper.
2025
Autores
Gonçalves, A; Pereira, T; Lopes, D; Cunha, F; Lopes, F; Coutinho, F; Barreiros, J; Durães, J; Santos, P; Simões, F; Ferreira, P; Freitas, EDC; Trovão, JPF; Santos, V; Ferreira, JP; Ferreira, NMF;
Publicação
Automation
Abstract
2024
Autores
Bulganbayev, MA; Suliyev, R; Ferreira, NMF;
Publicação
ELECTRONICS
Abstract
This study provides a comprehensive overview of the automated assembly process of large-scale metal structures using industrial robots. Our research reveals that the utilization of industrial robots significantly enhances precision, speed, and cost-effectiveness in the assembly process. The main findings suggest that integrating industrial robots in metal structure assembly holds substantial promise for optimizing manufacturing processes and elevating the quality of the final products. Additionally, the research demonstrates that robotic automation in assembly operations can lead to significant improvements in resource utilization and operational consistency. This automation also offers a viable solution to the challenges of manual labor shortages and ensures a higher standard of safety and accuracy in the manufacturing environment.
2024
Autores
Gameiro, T; Pereira, T; Viegas, C; Di Giorgio, F; Ferreira, NF;
Publicação
FORESTS
Abstract
Forest fires are becoming increasingly common, and they are devastating, fueled by the effects of global warming, such as a dryer climate, dryer vegetation, and higher temperatures. Vegetation management through selective removal is a preventive measure which creates discontinuities that will facilitate fire containment and reduce its intensity and rate of spread. However, such a method requires vast amounts of biomass fuels to be removed, over large areas, which can only be achieved through mechanized means, such as through using forestry mulching machines. This dangerous job is also highly dependent on skilled workers, making it an ideal case for novel autonomous robotic systems. This article presents the development of a universal perception, control, and navigation system for forestry machines. The selection of hardware (sensors and controllers) and data-integration and -navigation algorithms are central components of this integrated system development. Sensor fusion methods, operating using ROS, allow the distributed interconnection of all sensors and actuators. The results highlight the system's robustness when applied to the mulching machine, ensuring navigational and operational accuracy in forestry operations. This novel technological solution enhances the efficiency of forest maintenance while reducing the risk exposure to forestry workers.
2024
Autores
Pereira, T; Gameiro, T; Pedro, J; Viegas, C; Ferreira, NMF;
Publicação
SENSORS
Abstract
This article presents the development of a vision system designed to enhance the autonomous navigation capabilities of robots in complex forest environments. Leveraging RGBD and thermic cameras, specifically the Intel RealSense 435i and FLIR ADK, the system integrates diverse visual sensors with advanced image processing algorithms. This integration enables robots to make real-time decisions, recognize obstacles, and dynamically adjust their trajectories during operation. The article focuses on the architectural aspects of the system, emphasizing the role of sensors and the formulation of algorithms crucial for ensuring safety during robot navigation in challenging forest terrains. Additionally, the article discusses the training of two datasets specifically tailored to forest environments, aiming to evaluate their impact on autonomous navigation. Tests conducted in real forest conditions affirm the effectiveness of the developed vision system. The results underscore the system's pivotal contribution to the autonomous navigation of robots in forest environments.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.