Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Rui Campos tem doutoramento em Engenharia Electrotécnica e de Computadores pela Universidade do Porto desde 2011. Atualmente, é coordenador da área de redes sem fios (http://win.inesctec.pt) no Centro de Telecomunicações e Multimédia composta por 30 investigadores, e é membro sénior do IEEE. Rui Campos tem vindo a coordenadar vários projetos de I&D+i, incluindo: SIMBED, UGREEN, BLUECOM+, MareCom, MTGrid, a ação WiFIX dentro do projeto FP7 CONFINE, Mare-Fi, Under-Fi, ReCoop e HiperWireless. Rui Campos tem igualmente participado em múltiplos projetos de I&D, incluindo os seguintes projetos europeus: H2020 RAWFIE, FP7 SUNNY, FP7 CONFINE, FP6 Ambient Networks Phase 1 e FP6 Ambient Networks Phase 2. Os seus interesses de investigação incluem os aspetos de controlo de acesso ao meio, gestão de recursos rádio, gestão de mobilidade e auto-configuração em redes emergentes, com especial foco nas redes formadas por plataformas voadoras, redes marítimas e redes subaquáticas. 

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Rui Lopes Campos
  • Cargo

    Investigador Coordenador
  • Desde

    17 fevereiro 2003
037
Publicações

2024

Aquacom: A Multimodal Underwater Wireless Communications Manager for Enhanced Performance

Autores
Moreira, G; Loureiro, JP; Teixeira, FB; Campos, R;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
Underwater wireless communications play a significant role in the Blue Economy, supporting the operations of sensing platforms like Autonomous Surface Vehicles (ASVs) and Autonomous Underwater Vehicles (AUVs). These platforms require reliable and fast communications to transmit the extensive data gathered without surfacing. Yet, the ocean poses challenges to signal propagation, restricting communications to high bitrate at short ranges via optical and RF, or low bitrate at long distances using acoustic communications. This paper introduces Aquacom, a multimodal manager for underwater communications that integrates acoustic, RF, and optical communnications, ensuring seamless handover between technologies and link aggregation to enhance network performance. Upon validation in freshwater tank lab tests, Aquacom demonstrated the capability for switching interfaces without data loss and effective link aggregation through the simultaneous use of multiple wireless interfaces.

2024

Trajectory-Aware Rate Adaptation for Flying Networks

Autores
Queiros, R; Ruela, J; Fontes, H; Campos, R;

Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Despite the trend towards ubiquitous wireless connectivity, there are scenarios where the communications infrastructure is damaged and wireless coverage is insufficient or does not exist, such as in natural disasters and temporary crowded events. Flying networks, composed of Unmanned Aerial Vehicles (UAV), have emerged as a flexible and cost-effective solution to provide on-demand wireless connectivity in these scenarios. UAVs have the capability to operate virtually everywhere, and the growing payload capacity makes them suitable platforms to carry wireless communications hardware. The state of the art in the field of flying networks is mainly focused on the optimal positioning of the flying nodes, while the wireless link parameters are configured with default values. On the other hand, current link adaptation algorithms are mainly targeting fixed or low mobility scenarios. We propose a novel rate adaptation approach for flying networks, named Trajectory Aware Rate Adaptation (TARA), which leverages the knowledge of flying nodes’ movement to predict future channel conditions and perform rate adaptation accordingly. Simulation results of 100 different trajectories show that our solution increases throughput by up to 53% and achieves an average improvement of 14%, when compared with conventional rate adaptation algorithms such as Minstrel-HT. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2024

CONVERGE: A Vision-Radio Research Infrastructure Towards 6G and Beyond

Autores
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;

Publicação
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024

Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.

2024

SUPPLY: Sustainable Multi-UAV Performance-Aware Placement Algorithm for Flying Networks

Autores
Ribeiro, P; Coelho, A; Campos, R;

Publicação
IEEE ACCESS

Abstract
Unmanned Aerial Vehicles (UAVs) are versatile platforms for carrying communications nodes such as Wi-Fi Access Points and cellular Base Stations. Flying Networks (FNs) offer on-demand wireless connectivity where terrestrial networks are impractical or unsustainable. However, managing communications resources in FNs presents challenges, particularly in optimizing UAV placement to maximize Quality of Service (QoS) for Ground Users (GUs) while minimizing energy consumption, given the UAVs' limited battery life. Existing multi-UAV placement solutions primarily focus on maximizing coverage areas, assuming static UAV positions and uniform GU distribution, overlooking energy efficiency and heterogeneous QoS requirements. We propose the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which defines and optimizes UAV trajectories to reduce energy consumption while ensuring QoS based on Signal-to-Noise Ratio (SNR) in the links with GUs. Additionally, we introduce the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate energy consumption. Using both MUAVE and ns-3 simulators, we evaluate SUPPLY in typical and random networking scenarios, focusing on energy consumption and network performance. Results show that SUPPLY reduces energy consumption by up to 25% with minimal impact on throughput and delay.

2024

Traffic and Obstacle-aware UAV Positioning in Urban Environments Using Reinforcement Learning

Autores
Shafafi, K; Ricardo, M; Campos, R;

Publicação
CoRR

Abstract

Teses
supervisionadas

2023

Reinforcement Learning-Based Positioning Algorithm for Relay Nodes in Aerial Networks

Autor
Gabriella Fernandes Pantaleão

Instituição
INESCTEC

2023

Reinforcement Learning-Based Positioning Algorithm for Relay Nodes in Aerial Networks

Autor
Gabriella Fernandes Pantaleão

Instituição
INESCTEC

2023

Reinforcement Learning-Based Positioning Algorithm for Relay Nodes in Aerial Networks

Autor
Gabriella Fernandes Pantaleão

Instituição
INESCTEC

2023

Context-aware Wireless Underwater Communications using a Multimodal Approach

Autor
João Pedro Teixeira Loureiro

Instituição
INESCTEC

2023

Slicing-Aware Flying Communications Network

Autor
João Cristiano Mourão Rodrigues

Instituição
INESCTEC