2027
Autores
Santos, J; Ferraz, M; Pinto, A; Rocha, LF; Costa, CM; Simões, AC; Bombeke, K; Vaz, M;
Publicação
International Symposium on Occupational Safety and Hygiene: Proceedings Book of the SHO2023
Abstract
2025
Autores
Guimarães, V; Sousa, I; Cunha, R; Magalhães, R; Machado, A; Fernandes, V; Reis, PBPS; Correia, MV;
Publicação
Comput. Methods Programs Biomed.
Abstract
2025
Autores
Guimaraes, V; Sousa, I; Cunha, R; Magalhaes, R; Machado, A; Fernandes, V; Reis, S; Correia, MV;
Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Abstract
Background and Objectives: Early detection of cognitive impairment is crucial for timely clinical interventions aimed at delaying progression to dementia. However, existing screening tools are not ideal for wide population screening. This study explores the potential of combining machine learning, specifically, one-class classification, with simpler and quicker motor-cognitive tasks to improve the early detection of cognitive impairment. Methods: We gathered data on gait, fingertapping, cognitive, and dual tasks from older adults with mild cognitive impairment and healthy controls. Using one-class classification, we modeled the behavior of the majority group (healthy controls), identifying deviations from this behavior as abnormal. To account for confounding effects, we integrated confound regression into the classification pipeline. We evaluated the performance of individual tasks, as well as the combination of features (early fusion) and models (late fusion). Additionally, we compared the results with those from two-class classification and a standard cognitive screening test. Results: We analyzed data from 37 healthy controls and 16 individuals with mild cognitive impairment. Results revealed that one-class classification had higher predictive accuracy for mild cognitive impairment, whereas two-class classification performed better in identifying healthy controls. Gait features yielded the best results for one-class classification. Combining individual models led to better performance than combining features from the different tasks. Notably, the one-class majority voting approach exhibited a sensitivity of 87.5% and a specificity of 75.7%, suggesting it may serve as a potential alternative to the standard cognitive screening test. In contrast, the two-class majority voting failed to improve the low sensitivities achieved by the individual models due to the underrepresentation of the impaired group. Conclusion: Our preliminary results support the use of one-class classification with confound control to detect abnormal patterns of gait, fingertapping, cognitive, and dual tasks, to improve the early detection of cognitive impairment. Further research is necessary to substantiate the method's effectiveness in broader clinical settings.
2025
Autores
Sousa, MS; Loureiro, ALD; Miguéis, VL;
Publicação
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
In today's highly competitive fashion retail market, it is crucial to have accurate demand forecasting systems, namely for new products. Many experts have used machine learning techniques to forecast product sales. However, sales that do not happen due to lack of product availability are often ignored, resulting in censored demand and service levels that are lower than expected. Motivated by the relevance of this issue, we developed a two-stage approach to forecast the demand for new products in the fashion retail industry. In the first stage, we compared four methods of transforming historical sales into historical demand for products already commercialized. Three methods used sales-weighted averages to estimate demand on the days with stock-outs, while the fourth method employed an Expectation-Maximization (EM) algorithm to account for potential substitute products affected by stock-outs of preferred products. We then evaluated the performance of these methods and selected the most accurate one for calculating the primary demand for these historical products. In the second stage, we predicted the demand for the products of the following collection using Random Forest, Deep Neural Networks, and Support Vector Regression algorithms. In addition, we applied a model that consisted of weighting the demands previously calculated for the products of past collections that were most similar to the new products. We validated the proposed methodology using a European fashion retailer case study. The results revealed that the method using the Expectation-Maximization algorithm had the highest potential, followed by the Random Forest algorithm. We believe that this approach will lead to more assertive and better-aligned decisions in production management.
2025
Autores
Nogueira, JD; Pires, EJ; Reis, A; de Moura Oliveira, PB; Pereira, A; Barroso, J;
Publicação
Lecture Notes in Networks and Systems
Abstract
With the serious danger to nature and humanity that forest fires are, taken into consideration, this work aims to develop an artificial intelligence model capable of accurately predicting the forest fire risk in a certain region based on four different factors: temperature, wind speed, rain and humidity. Thus, three models were created using three different approaches: Artificial Neural Networks (ANN), Random Forest (RF), and K-Nearest Neighbor (KNN), and making use of an Algerian forest fire dataset. The ANN and RF both achieved high accuracy results of 97%, while the KNN achieved a slightly lower average of 91%. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Lopes, T; Cavaco, R; Capela, D; Dias, F; Teixeira, J; Monteiro, CS; Lima, A; Guimaraes, D; Jorge, PAS; Silva, NA;
Publicação
TALANTA
Abstract
Combining data from different sensing modalities has been a promising research topic for building better and more reliable data-driven models. In particular, it is known that multimodal spectral imaging can improve the analytical capabilities of standalone spectroscopy techniques through fusion, hyphenation, or knowledge distillation techniques. In this manuscript, we focus on the latter, exploring how one can increase the performance of a Laser-induced Breakdown Spectroscopy system for mineral classification problems using additional spectral imaging techniques. Specifically, focusing on a scenario where Raman spectroscopy delivers accurate mineral classification performance, we show how to deploy a knowledge distillation pipeline where Raman spectroscopy may act as an autonomous supervisor for LIBS. For a case study concerning a challenging Li-bearing mineral identification of spodumene and petalite, our results demonstrate the advantages of this method in improving the performance of a single-technique system. LIBS trained with labels obtained by Raman presents an enhanced classification performance. Furthermore, leveraging the interpretability of the model deployed, the workflow opens opportunities for the deployment of assisted feature discovery pipelines, which may impact future academic and industrial applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.