2024
Autores
Lopes, X; Coelho, LCC; Jorge, PAS; Mendes, JP;
Publicação
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024
Abstract
Carbon dioxide (CO2) holds paramount significance in nature, serving as a vital component in Earth's ecosystems. Its evaluation has become increasingly important across various sectors, spanning from environmental conservation to industrial operations. Therefore, this study investigates the viability of utilizing a pH colorimetric dye as a CO2-sensitive material. The material's effectiveness relies on chemical modifications induced in the dye structure through the action of a phase transfer agent, which establishes a stable equilibrium with the dye, thereby promoting its receptivity to CO2 molecules. As the resulting physicochemical changes primarily exhibit colorimetric alterations, an optical system was developed to assess the performance of this material upon exposure to CO2. Employing a dual-wavelength method, the system also incorporates a ratiometric relationship between the two signals to provide the most precise information. The conducted experiments generated promising results when the dye was subjected to varying concentrations of CO2, ranging from 0% to 4%, in comparison to nitrogen (N-2). The application of the ratiometric method emerged as a crucial factor in this system, enabling its potential use in environments characterized by instability. Finally, the dye-sensitive characteristics experienced enhancement through the integration of an ionic liquid within the membrane matrix.
2024
Autores
Cavaco, R; Lopes, T; Jorge, PAS; Silva, NA;
Publicação
UNCONVENTIONAL OPTICAL IMAGING IV
Abstract
Spectral imaging is a technique that captures spectral information from a scene and maps it onto a 2D image, featuring the potential to reveal hidden features and properties of objects that are invisible to the human eye, such as elemental and molecular compositions. Augmented reality (AR), on the other hand, is a technology that enhances the perception of reality by superimposing digital information on the physical world. While these technologies have different purposes, they can be considered one and the same in terms of providing an user-centric extension of reality. Spectral imaging provides the information that can reveal the underlying nature of objects, while AR provides the method of visualization that can display the information in an intuitive and interactive way. In this work, we present a novel Unity toolkit that combines spectral imaging and a HoloLens 2 AR device to create an interactive and immersive experience for the user. The toolkit enables the interactive visualization of various elemental maps of a 3D rock model in AR using a simple and intuitive interface. With this technique, the user can select a sample model and an elemental map from a preloaded asset library and then see the map projected onto the rock model in AR, using simple interactions such as zoom adjustment, rotation, and pan of the models to explore features and properties in detail. The toolkit offers several advantages, including better contextual interpretation of the spectral data by placing it in relation to the shape and texture of the rock, increased user engagement and curiosity through the creation of a realistic and immersive experience, and ease of decision-making through the provision of comparative tools. In short, by combining spectral imaging and AR, we present an innovative approach that can enrich the user experience and expand the user knowledge of the environment.
2024
Autores
Soares, L; Perez-Herrera, RA; Novais, S; Ferreira, A; Silva, S; Frazao, O;
Publicação
PHOTONICS
Abstract
In this study, different configurations based on linear fiber lasers were proposed and experimentally demonstrated to measure the concentration of liquid solutions. Samples of paracetamol liquid solutions with different concentrations, in the range from 52.61 to 201.33 g/kg, were used as a case-study. The optical gain was provided by a commercial bidirectional Erbium-Doped Fiber Amplifier (EDFA) and the linear cavity was obtained using two commercial Fiber Bragg Gratings (FBGs). The main difference of each configuration was the coupling ratio of the optical coupler used to extract the system signal. The sensing head corresponded to a Single-Mode Fiber (SMF) tip that worked as an intensity sensor. The results reveal that, despite the optical coupler used (50:50, 60:40, 70:30 or 80:20), all the configurations reached the laser condition, however, the concentration sensing was only possible using a laser drive current near to the threshold value. The configurations using a 70:30 and an 80:20 optical coupler allowed paracetamol concentration measurements with a higher sensitivity of (-3.00 +/- 0.24) pW/(g/kg) to be performed. In terms of resolution, the highest value obtained was 1.75 g/kg, when it was extracted at 20% of the output power to the linear cavity fiber laser configuration.
2024
Autores
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;
Publicação
SENSORS
Abstract
This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 +/- 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 +/- 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.
2024
Autores
Cardoso, VHR; Caldas, P; Giraldi, MTR; Cernadas, ML; Fernandes, CS; Frazao, O; Costa, JCWA; Santos, JL;
Publicação
MEASUREMENT SCIENCE AND TECHNOLOGY
Abstract
This work addresses the historical development of techniques and methodologies oriented to the measurement of the internal diameter of transparent tubes since the original contributions of Anderson and Barr published in 1923 in the first issue of Measurement Science and Technology. The progresses on this field are summarized and highlighted the emergence and significance of the measurement approaches supported by the optical fiber.
2024
Autores
Monteiro, CS; Perez-Herrera, RA; Silva, NA; Silva, SO; Frazao, O;
Publicação
FIBER LASERS AND GLASS PHOTONICS: MATERIALS THROUGH APPLICATIONS IV
Abstract
The generation of short pulses in fiber lasers using saturable absorbers made of graphene oxide (GO), focusing on film thickness, was studied and optimized. The saturable absorber comprised a GO thin film deposited onto a single-mode fiber using the spray coating technique. Water-dispersed GO with a concentration of 4 mg/mL, characterized by a high proportion of monolayer flakes, was employed. This thin film was integrated into a cavity ring laser featuring an erbium-doped fiber amplifier (EDFA), resulting in a fiber laser emitting at a central emission wavelength of approximately 1564 nm and having a total cavity length of approximately 120 m. By controlling intracavity polarization, short-pulsed light was generated through mode-locking, Q switching, or a combination of both regimes. This work presents a comprehensive characterization of the cavity ring laser operating under the mode-locking regime. It encompasses an analysis of the spectral behavior, focusing on the evolution of the Kelly's sidebands with increasing pump power, as well as an assessment of its temporal stability. Moreover, the effects of the aging of the saturable absorber material were studied after a time period of 6 months after the fabrication. It was observed that the general characteristics of spectral signal of the laser were maintained, with long-term stability .
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.