2024
Autores
Mendes, JP; Coelho, LCC; Ribeiro, JA;
Publicação
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024
Abstract
New systems with innovative design to perform measurements combining electrochemistry and surface plasmon resonance (ESPR) are currently a need to overcome the limitations of existent market solutions and expand the research possibilities of this technology. The main goal of this work was to develop a new cell to increase ESPR practical applications in several fields. To do so, a homemade SPR cell, fabricated by 3D-printing technology, was adapted for this purpose by incorporating the conventional 3-electrodes to perform the electrochemical experiments. The developed cell was fully compatible with commercial SPR substrates. After optimization of the homemade ESPR setup to perform the combined electrochemical and SPR measurements, two main applications were explored in this work. The first was the use of ESPR technology as straightforward tool to simultaneously investigate the electrical and optical properties of conducing/nonconducting polymers electrosynthetized on the SPR platforms. The conducting polymer poly(thionine) was used in this work for proof-of- concept. The second application envisaged the use of ESPR approach for simple electrodeposition of materials with enhanced plasmonic properties for sensitivity enhancement of SPR biosensors. For validation of the concept, graphene oxide (GO) was electrochemically reduced on gold substrates aiming to evaluate the plasmonic properties of graphene-modified sensing surfaces.
2024
Autores
Almeida, MAS; Carvalho, JPM; Almeida, JMMM; Coelho, LCC;
Publicação
OPTICAL SENSING AND DETECTION VIII
Abstract
Energy consumption has increased exponentially due to population growth leading to an increasing impact on natural resources. Green hydrogen (H-2) offers a safer alternative to fossil fuels, making it a promising alternative for sustainable energy consumption. However, due to H-2's flammability it is crucial to monitor its concentrations in the environment. Optical sensors have been developed to monitor H-2 concentrations in harsh environments with high sensitivity and remote measurement. In this work, a numerical study and experimental validation of an optical fiber sensor based on Surface Plasmon Resonance (SPR) for H-2 detection are presented. This sensor is composed of a multi-mode fiber with a SPR structure of a metal/dielectric/Pd, where the Pd acts as a sensitive layer. The plasmonic active materials studied are Ag and Au, while TiO2 and SiO2 are used as dielectrics, finding that the metal materials have more impact on the SPR band definition, while the dielectric layers have an impact on the band spectral position. The optimized configuration with 25nm/60nm/3nm of Au/TiO2/Pd was experimentally developed, obtaining a wavelength shift of 19nm for 2kPa of H-2, validating the numerical results, and confirming the possibility of using this type of system for H-2 detection.
2024
Autores
Da Silva, PM; Carvalho, JP; Mendes, JP; De Almeida, JM; Coelho, LC;
Publicação
EPJ Web of Conferences
Abstract
2024
Autores
Almeida, MA; Carvalho, JP; Pastoriza Santos, I; Almeida, JM; Coelho, LC;
Publicação
EPJ Web of Conferences
Abstract
2024
Autores
Carvalho, JP; Almeida, MA; Mendes, JP; Coelho, LC; De Almeida, JM;
Publicação
EPJ Web of Conferences
Abstract
2024
Autores
Kant, K; Beeram, R; Cao, Y; dos Santos, PSS; González-Cabaleiro, L; Garcia-Lojo, D; Guo, H; Joung, YJ; Kothadiya, S; Lafuente, M; Leong, YX; Liu, YY; Liu, YX; Moram, SSB; Mahasivam, S; Maniappan, S; Quesada-González, D; Raj, D; Weerathunge, P; Xia, XY; Yu, Q; Abalde-Cela, S; Alvarez-Puebla, RA; Bardhan, R; Bansal, V; Choo, J; Coelho, LCC; de Almeida, JMMM; Gómez-Graña, S; Grzelczak, M; Herves, P; Kumar, J; Lohmueller, T; Merkoçi, A; Montaño-Priede, JL; Ling, XY; Mallada, R; Pérez-Juste, J; Pina, MP; Singamaneni, S; Soma, VR; Sun, MT; Tian, LM; Wang, JF; Polavarapu, L; Santos, IP;
Publicação
NANOSCALE HORIZONS
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches. This comprehensive review summarizes the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, different chemical and biological analytes, and the expected future technologies.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.