2024
Autores
Maia, JM; Marques, PVS;
Publicação
OPTICS AND LASER TECHNOLOGY
Abstract
Low-finesse Fabry-Perot interferometers (FPI) with a plano-convex geometry are fabricated in ULE (R) glass through ultrafast laser machining. With this geometry, it is possible to overcome beam divergence effects that contribute to the poor fringe visibility usually observed in 100-mu m or longer planar-planar FPIs. By replacing the planar surface with a spherical one, the diverging beam propagating through the cavity is re-focused back at the entrance of the lead-in fiber upon reflection at this curved interface, thereby balancing out the intensities of both interfering beams and enhancing the visibility. The design of a 3D shaped cavity with a spherical sidewall is only made possible through fs-laser direct writing followed by chemical etching. In this technique, the 3D volume is reduced to writing of uniformly vertically spaced 2D layers with unique geometry, which are then selectively removed during chemical etching with HF acid. The radius of curvature that maximizes fringe visibility is computed using a numerical tool that is experimentally validated. By choosing the optimal radius of curvature, uniform visibilities in the range of 0.98-1.00 are measured for interferometers produced with cavity lengths spanning from 100 to 1000 mu m.
2024
Autores
Cameira, C; Maia, M; Marques, PVS;
Publicação
EPJ Web of Conferences
Abstract
This study reports the fabrication of three-dimensional microfluidic channels in fused silica, using femtosecond laser micromachining, to achieve two-dimensional hydrodynamic flow focusing in either the horizontal or the vertical directions. Spatial focusing of 3 µm polystyrene particles was successfully demonstrated, showing the ability of the fabricated devices to confine microparticles within a 6 µm layer over a channel width of 420 µm and within a 5 µm layer over a channel height of 260 µm. Integration of laser-direct written optical waveguides inside a microfluidic chip and orthogonal to the channel also enabled the implementation of a dual-beam optical trap, with trapping of polystyrene microparticles using a 1550 nm beam being demonstrated. © The Authors.
2024
Autores
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;
Publicação
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024
Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.
2024
Autores
Ferreira, TD; Guerreiro, A; Silva, NA;
Publicação
NONLINEAR OPTICS AND ITS APPLICATIONS 2024
Abstract
Exploring optical analogues with paraxial fluids of light has been a subject of great interest over the past years. Despite many optical analogues having been created and explored with these systems, they have some limitations that usually hinder the observation of the desired dynamics. Since these systems map the effective time onto the propagation direction, the fixed size of the nonlinear media limits the experimental effective time, and only the output state is accessible. In this work, we present a solution to overcome these problems in the form of an optical feedback loop, which consists of reconstructing the output state, by using the off-axis digital holography technique, and then re-injecting it again at the entrance of the medium through the utilization of Spatial Light Modulators. This technique enables access to intermediate states and an extension of the system effective time. Furthermore, the total control of the amplitude and phase of the beam at the input of the medium, also allows us to explore more exotic configurations that may be interesting in the context of optical analogues, that otherwise would be hard to create. To demonstrate the capabilities of the setup, we explore qualitatively some case studies, such as the dark soliton decay into vortices with the propagation of shock waves, and the collision dynamics between three flat-top states. The results presented in this work pave the way for probing new dynamics with paraxial fluids of light.
2024
Autores
Ferreira, TD; Guerreiro, A; Silva, NA;
Publicação
PHYSICAL REVIEW LETTERS
Abstract
Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium. In this Letter, we present an experimental approach to solve this limitation in the form of a digital feedback loop, which consists of the reconstruction of the optical states at the end of the system followed by their subsequent reinjection exploiting wavefront shaping techniques. The results enclosed demonstrate the potential of this approach to access unprecedented dynamics, paving the way for the observation of novel phenomena in these systems.
2024
Autores
Romeiro, F; Rodrigues, JB; Miranda, C; Cardoso, P; Silva, O; Costa, CWA; Giraldi, MR; Santos, L; Guerreiro, A;
Publicação
EPJ Web of Conferences
Abstract
This theoretical study presents a D-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) based sensor designed for humidity detection in transformer oil. Humidity refers to the presence of water dissolved or suspended in the oil, which can affect its dielectric properties and, consequently, the efficiency and safety of the transformer's operation, failures in the sealing system and the phenomenon of condensation can be the main sources of this humidity. This sensor leverages the unique properties of the coupling between surface plasmons and fiber guided mode at the Au-PCF interface to enhance the sensitivity to humidity changes in the external environment. The research demonstrated the sensor's efficacy in monitoring humidity levels ranging from 0% to 100% with an average sensitivity of measured at 1106.1 nm/RIU. This high sensitivity indicates a substantial shift in the resonance wavelength corresponding to minor changes in the refractive index caused by varying humidity levels, which is critically important in the context of transformer maintenance and safety. Transformer oil serves as both an insulator and a coolant, and its humidity level is a key parameter influencing the performance and longevity of transformers. Excessive humidity can lead to insulation failure and reduced efficiency and, therefore, the ability to accurately detect and monitor humidity levels in transformer oil can significantly enhance preventive maintenance strategies, reduce downtime, and prevent potential failures, ensuring the reliable operation of electrical power systems. © The Authors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.