2024
Autores
Teixeira, J; Ribeiro, A; Jorge, AS; Silva, A;
Publicação
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
Recent advances in optical trapping have opened new opportunities for manipulating micro and nanoparticles, establishing optical tweezers (OT) as a powerful tool for single-cell analysis. Furthermore, intelligent systems have been developed to characterize these particles, as information about their size and composition can be extracted from the scattered radiation signal. In this manuscript, we aim to explore the potential of optical tweezers for the characterization of sub-micron size variations in microparticles. We devised a case study, aiming to assess the limits of the size discrimination ability of an optical tweezer system, using transparent 4.8 µm PMMA particles, functionalized with streptavidin. We focused on the heavily studied streptavidin-biotin system, with streptavidin-functionalized PMMA particles targeting biotinylated bovine serum albumin. This binding process results in an added molecular layer to the particle’s surface, increasing its radius by approximately 7 nm. An automatic OT system was used to trap the particles and acquire their forward-scattered signals. Then, the signals’ frequency components were analyzed using the power spectral density method followed by a dimensionality reduction via the Uniform Manifold Approximation and Projection algorithm. Finally, a Random Forest Classifier achieved a mean accuracy of 94% for the distinction of particles with or without the added molecular layer. Our findings demonstrate the ability of our technique to discriminate between particles that are or are not bound to the biotin protein, by detecting nanoscale changes in the size of the microparticles. This indicates the possibility of coupling shape-changing bioaffinity tools (such as APTMERS, Molecular Imprinted Polymers, or antibodies) with optical trapping systems to enable optical tweezers with analytical capability. © 2024 SPIE.
2023
Autores
Kurunathan, H; Santos, J; Moreira, D; Santos, PM;
Publicação
2023 IEEE 24TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, WOWMOM
Abstract
The domain of Intelligent Transportation Systems (ITS) is becoming a key candidate to enable safer and efficient mobility in IoT enabled smart cities. Several recent research in cooperative autonomous systems are conducted over simulation frameworks as real experiments are still too costly. In this paper, we present a platooning robotic test-bed platform with a 1/10 scale robotic vehicles that functions based on the input front commercially off the shelf technologies (COTS) such as Lidars and cameras. We also present an in-depth analysis of the functionalities and architecture of the proposed system. We also compare the performance of the aforementioned sensors in some real-life emulated scenarios. From our results, we were able to concur that the camera based platooning is able to perform well at partially observable scenarios than its counterpart.
2023
Autores
Cruz, DB; Almeida, JR; Oliveira, JL;
Publicação
IEEE ACCESS
Abstract
As software applications continue to become more complex and attractive to cyber-attackers, enhancing resilience against cyber threats becomes essential. Aiming to provide more robust solutions, different approaches were proposed for vulnerability detection in different stages of the application life-cycle. This article explores three main approaches to application security: Static Application Security Testing (SAST), Dynamic Application Security Testing (DAST), and Software Composition Analysis (SCA). The analysis conducted in this work is focused on open-source solutions while considering commercial solutions to show contrast in the approaches taken and to better illustrate the different options available. It proposes a baseline comparison model to help evaluate and select the best solutions, using comparison criteria that are based on community standards. This work also identifies future opportunities for application security, highlighting some of the key challenges that still need to be addressed in order to fully protect against emerging threats, and proposes a workflow that combines the identified tools to be used for vulnerability assessments.
2023
Autores
dos Santos, JD; Klimek, D; Calusinska, M; Lobo da Cunha, A; Catita, J; Goncalves, H; Gonzalez, I; Reyes, F; Lage, OM;
Publicação
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY
Abstract
An isolation effort focused on sporogenous Actinomycetota from the Tagus estuary in Alcochete, Portugal, yielded a novel actinomycetal strain, designated MTZ3.1T, which was subjected to a polyphasic taxonomic study. MTZ3.1T is characterised by morphology typical of members of the genus Streptomyces, with light beige coloured substrate mycelium, which does not release pigments to the culture medium and with helicoidal aerial hyphae that differentiate into spores with a light- grey colour. The phylogeny of MTZ3.1T, based on the full 16S rRNA gene sequence, indicated that its closest relatives were Streptomyces alkaliterrae OF1T (98.48 %), Streptomyces chumphonensis KK1-2T (98.41 %), Streptomyces albofaciens JCM 4342T (98.34 %), Streoptomyces paromomycinus NBRC 15454T (98.34 %) and Streptomyces chrestomyceticus NRBC 13444T (98.34 %). Moreover, average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridisation (dDDH) are below the species cutoff values (ANI 67.70 and 68.35 %, AAI 77.06 and 76.71 % and dDDH 22.10 and 21.50 % for S. alkaliterrae OF1T and S. chumphonensis KK1-2T, respectively). Whole genome sequencing revealed that MTZ3.1T has a genome of 5 644 485 bp with a DNA G+C content of 71.29 mol% and 5044 coding sequences. Physiologically, MTZ3.1T is strictly aerobic, able to grow at 15-37 & DEG;C, optimally at 25 & DEG;C and between pH5 and 8 and showed high salinity tolerance, growing with 0-10 %(w/v) NaCl. Major cellular fatty acids are C15:0, iso-C15:0, anteiso-C15: 0 and iso- C16:0. Furthermore, it was able to utilise a variety of nitrogen and carbon sources. Antimicrobial screening indicated that MTZ3.1T has potent anti- Staphylococcus aureus activity. On the basis of the polyphasic data, MTZ3.1T is proposed to represent a novel species, Streptomyces meridianus sp. nov. (= CECT 30416T = DSM 114037T=LMG 32463T).
2023
Autores
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;
Publicação
OCEANS 2023 - LIMERICK
Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.
2023
Autores
Capela, D; Ferreira, M; Lima, A; Jorge, P; Guimarães, D; Silva, NA;
Publicação
Results in Optics
Abstract
Laser-induced breakdown spectroscopy is a spectroscopic technique that allows for fast elemental mapping of heterogeneous samples. Yet, detailed maps need high-resolution sampling grids, which can turn the task into a time-consuming process and can increase sample damage. In this work, we present the implementation of an imaged-based intelligent mesh algorithm that makes use of superpixel segmentation to optimize elemental mapping processes. Our results show that the approach can increase the elemental mapping resolution and decrease acquisition times, fostering opportunities for applications that benefit from minimal sample damage such as heritage analysis, or timely analysis such as industrial applications. © 2022 The Author(s)
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.