Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2025

A new proposed model to assess the digital organizational readiness to maximize the results of the digital transformation in SMEs

Autores
Silva, RP; Mamede, HS; Santos, V;

Publicação
JOURNAL OF INNOVATION & KNOWLEDGE

Abstract
Scientific research in digital transformation is expanding in scope, quantity, and relevance, bringing forth diverse perspectives on which factors and specific dimensions-such as organizational structure, culture, and technological readiness-affect the success of digital transformation initiatives. Numerous studies have proposed mechanisms to assess an organization's maturity through digital transformation across various models. Some of these models focus on external influences, others on internal factors, or both. Although these assessments provide valuable insights into a company's transformation state, they often lack consistency, and recent research highlights key gaps. Specifically, many models primarily reflect the views of senior management on the general progress of digital transformation rather than on measurable outcomes. Moreover, these models tend to target large enterprises, overlooking small and medium enterprises (SMEs), which are crucial to economic growth yet face unique challenges, such as limited resources and expertise. Our study addresses these gaps by concentrating on SMEs and introducing a novel approach to assessing digital transformation readiness-a metric that reflects how prepared an organization is to optimize transformation outcomes. Following design science research methodology, we develop a model that centers on the perspectives of general employees, offering companies an in-depth view of their readiness across 20 dimensions. Each dimension is evaluated through behaviors indicative of the highest level of digital transformation readiness, helping companies identify areas to maximize potential benefits. Our model focuses not on technological quality but on the degree to which behaviors essential for leveraging technology and innovative business models are integrated within the organization.

2025

From Data to Action

Autores
Dias, JT; Santos, A; Mamede, HS;

Publicação
Advances in Computational Intelligence and Robotics - AI and Learning Analytics in Distance Learning

Abstract
This chapter examines how Artificial Intelligence (AI) and Learning Analytics (LA) are transforming distance education, accelerated by the COVID-19 shift to e-learning. By using data from Learning Management Systems (LMS), these technologies can personalize learning, improve student retention, and automate tasks. AI, particularly machine learning, enables dynamic adaptation to student needs, while LA provides valuable insights for informed instructional decisions. However, ethical concerns, including data privacy and algorithmic bias, must be addressed to ensure equitable access and fair learning outcomes. The future of distance learning lies in responsible integration of AI and LA, creating immersive and inclusive educational experiences.

2025

AI and Learning Analytics in Distance Learning

Autores
Mamede, HS; Santos, A;

Publicação
Advances in Computational Intelligence and Robotics

Abstract

2025

The hierarchical importance of patent's characteristics to licensing: An analysis through Random Forest

Autores
Reis, AA; Leite, RAS; Walter, CE; Reis, IB; Goncalves, R; Martins, J; Branco, F; Au Yong Oliveira, M;

Publicação
EXPERT SYSTEMS

Abstract
The purpose of this study is to ascertain the hierarchical importance of a patent's characteristics to licensing. This research has a causal-exploratory purpose, in that it sought to establish relationships between variables. This research aims to identify which characteristics are influential in the licensing of Brazilian academic patents in the biotechnology and pharmaceutical technology fields, based on the mining of data contained in licensed and unlicensed patent documents. Which characteristics of Brazilian academic patents are most influential in their licensing potential? An analysis through Random Forest was performed. To the best of our knowledge, there are no studies in Brazil using machine learning to identify which characteristics are influential in licensing a particular academic patent, especially given the difficulty of gathering this information. We found that regardless of the measure used, the three most critical licensing characteristics for the Biotechnology and Pharmaceutical patents analysed are Patent Scope, Life Cycle, and Claims. At the same time, the least important is the Patent Cooperation Treaty. The relevance of this research is based on the fact that after identifying which intrinsic characteristics influence the final value and licensing probabilities of a given patent, it will be possible to develop mathematical models that provide accurate information for establishing technology transfer agreements. In practical terms, the results suggest that greater patent versatility, combined with lifecycle management and a technical effort to build strong claims, increases the licensing potential of academic biopharmaceutical patents.

2025

Multilanguage Detection of Design Pattern Instances

Autores
Andrade, H; Bispo, J; Correia, FF;

Publicação
JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS

Abstract
Code comprehension is often supported by source code analysis tools that provide more abstract views over software systems, such as those detecting design patterns. These tools encompass analysis of source code and ensuing extraction of relevant information. However, the analysis of the source code is often specific to the target programming language. We propose DP-LARA, a multilanguage pattern detection tool that uses the multilanguage capability of the LARA framework to support finding pattern instances in a code base. LARA provides a virtual AST, which is common to multiple OOP programming languages, and DP-LARA then performs code analysis of detecting pattern instances on this abstract representation. We evaluate the detection performance and consistency of DP-LARA with a few software projects. Results show that a multilanguage approach does not compromise detection performance, and DP-LARA is consistent across the languages we tested it for (i.e., Java and C/C++). Moreover, by providing a virtual AST as the abstract representation, we believe to have decreased the effort of extending the tool to new programming languages and maintaining existing ones.

2025

METFORD - Mutation tEsTing Framework fOR anDroid

Autores
Vincenzi, AMR; Kuroishi, PH; Bispo, J; da Veiga, ARC; da Mata, DRC; Azevedo, FB; Paiva, ACR;

Publicação
JOURNAL OF SYSTEMS AND SOFTWARE

Abstract
Mutation testing maybe used to guide test case generation and as a technique to assess the quality of test suites. Despite being used frequently, mutation testing is not so commonly applied in the mobile world. One critical challenge in mutation testing is dealing with its computational cost. Generating mutants, running test cases over each mutant, and analyzing the results may require significant time and resources. This research aims to contribute to reducing Android mutation testing costs. It implements mutation testing operators (traditional and Android-specific) according to mutant schemata (implementing multiple mutants into a single code file). It also describes an Android mutation testing framework developed to execute test cases and determine mutation scores. Additional mutation operators can be implemented in JavaScript and easily integrated into the framework. The overall approach is validated through case studies showing that mutant schemata have advantages over the traditional mutation strategy (one file per mutant). The results show mutant schemata overcome traditional mutation in all evaluated aspects with no additional cost: it takes 8.50% less time for mutant generation, requires 99.78% less disk space, and runs, on average, 6.45% faster than traditional mutation. Moreover, considering sustainability metrics, mutant schemata have 8,18% less carbon footprint than traditional strategy.

  • 3
  • 641