2024
Autores
Bernardes, G; Carvalho, N;
Publicação
MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2024
Abstract
We introduce a computational model that quantifies melodic pitch attraction in diatonic modal folk music, extending Lerdahl's Tonal Pitch Space. The model incorporates four melodic pitch indicators: vertical embedding distance, horizontal step distance, semitone interval distance, and relative stability. Its scalability is exclusively achieved through prior mode and tonic information, eliminating the need in existing models for additional chordal context. Noteworthy contributions encompass the incorporation of empirically-driven folk music knowledge and the calculation of indicator weights. Empirical evaluation, spanning Dutch, Irish, and Spanish folk traditions across Ionian, Dorian, Mixolydian, and Aeolian modes, uncovers a robust linear relationship between melodic pitch transitions and the pitch attraction model infused with empirically-derived knowledge. Indicator weights demonstrate cross-tradition generalizability, highlighting the significance of vertical embedding distance and relative stability. In contrast, semitone and horizontal step distances assume residual and null functions, respectively.
2024
Autores
Ribeiro, P; Coelho, A; Campos, R;
Publicação
IEEE ACCESS
Abstract
Unmanned Aerial Vehicles (UAVs) are versatile platforms for carrying communications nodes such as Wi-Fi Access Points and cellular Base Stations. Flying Networks (FNs) offer on-demand wireless connectivity where terrestrial networks are impractical or unsustainable. However, managing communications resources in FNs presents challenges, particularly in optimizing UAV placement to maximize Quality of Service (QoS) for Ground Users (GUs) while minimizing energy consumption, given the UAVs' limited battery life. Existing multi-UAV placement solutions primarily focus on maximizing coverage areas, assuming static UAV positions and uniform GU distribution, overlooking energy efficiency and heterogeneous QoS requirements. We propose the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which defines and optimizes UAV trajectories to reduce energy consumption while ensuring QoS based on Signal-to-Noise Ratio (SNR) in the links with GUs. Additionally, we introduce the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate energy consumption. Using both MUAVE and ns-3 simulators, we evaluate SUPPLY in typical and random networking scenarios, focusing on energy consumption and network performance. Results show that SUPPLY reduces energy consumption by up to 25% with minimal impact on throughput and delay.
2024
Autores
Moreira, G; Loureiro, JP; Teixeira, FB; Campos, R;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
Underwater wireless communications play a significant role in the Blue Economy, supporting the operations of sensing platforms like Autonomous Surface Vehicles (ASVs) and Autonomous Underwater Vehicles (AUVs). These platforms require reliable and fast communications to transmit the extensive data gathered without surfacing. Yet, the ocean poses challenges to signal propagation, restricting communications to high bitrate at short ranges via optical and RF, or low bitrate at long distances using acoustic communications. This paper introduces Aquacom, a multimodal manager for underwater communications that integrates acoustic, RF, and optical communnications, ensuring seamless handover between technologies and link aggregation to enhance network performance. Upon validation in freshwater tank lab tests, Aquacom demonstrated the capability for switching interfaces without data loss and effective link aggregation through the simultaneous use of multiple wireless interfaces.
2024
Autores
Cardoso, F; Matos, S; Pessoa, L; Clemente, A; Costa, J; Fernandes, C; Felicio, J;
Publicação
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP
Abstract
Reconfigurable Intelligent Surfaces (RIS) are an enabling technology widely investigated towards 6G. The viability of large active metasurfaces is constrained by the RF performance, cost, and power consumption. The number of switches per unit cell is a key design parameter that designers aim to minimize following cost and power consumption drivers. However, an efficient use of the aperture is ultimately required and although a one-to-one correspondence between number of switches and phase-quantization bits seems intuitive, one may question its impact. Here we present a full-wave evaluation of a 30x30 1-bit reflective RIS, implemented considering two pin diodes per unit cell. The RIS allows scanning up to 60 degrees from 28 to 29 GHz with a maximum aperture efficiency of 22%. This superior performance provides tantalizing evidence that the multiple switches per bit approach should not be discarded a priori due to its apparent higher complexity.
2024
Autores
Alexandropoulos, GC; Clemente, A; Matos, S; Husbands, R; Ahearne, S; Luo, Q; Lain-Rubio, V; Kürner, T; Pessoa, LM;
Publicação
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP
Abstract
Wireless communications in the THz frequency band is an envisioned revolutionary technology for sixth Generation (6G) networks. However, such frequencies impose certain coverage and device design challenges that need to be efficiently overcome. To this end, the development of cost- and energy-efficient approaches for scaling these networks to realistic scenarios constitute a necessity. Among the recent research trends contributing to these objectives belongs the technology of Reconfigurable Intelligent Surfaces (RISs). In fact, several high-level descriptions of THz systems based on RISs have been populating the literature. Nevertheless, hardware implementations of those systems are still very scarce, and not at the scale intended for most envisioned THz scenarios. In this paper, we overview some of the most significant hardware design and signal processing challenges with THz RISs, and present a preliminary analysis of their impact on the overall link budget and system performance, conducted in the framework of the ongoing TERRAMETA project.
2024
Autores
Inácio, SI; Pessoa, LM;
Publicação
18th European Conference on Antennas and Propagation, EuCAP 2024
Abstract
This paper presents a 1-bit graphene-based reflective reconfigurable intelligent surface (RIS), namely a reflectarray antenna, that operates in the Ka-band (27-31 GHz). The reflectarray unit-cell features a simple structure with one metal layer, a Rogers RT5880 substrate and a Graphene Sandwich Structure (GSS) on top. The GSS comprises two layers of graphene separated by a diaphragm paper and a thin PVC layer to enhance its durability. The reflectarray can ensure a 1-bit phase shift resolution, by alternating the bias voltage applied to the graphene. The unit-cell simulation shows that the losses are around 3 dB over the studied band for both unit-cell states. An equivalent circuit model is presented to facilitate the analysis and design of GSS-based unit-cells. The full-wave simulation results of a 32×32 reflectarray indicate a gain of 25 dBi for a steering angle of 10 deg., displaying a 1 dB gain bandwidth of 15%, confirming the promise of the graphene-based radiating elements. © 2024 18th European Conference on Antennas and Propagation, EuCAP 2024. All Rights Reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.