2024
Autores
Ribeiro, P; Coelho, A; Campos, R;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, WIMOB
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly used as wireless communications nodes, serving as Wi-Fi Access Points and Cellular Base Stations. To enable energy-efficient access networks, we previously introduced the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which focuses on the energy-efficient placement of UAVs as Flying Access Points (FAPs) to serve Ground Users (GUs). However, SUPPLY did not address the backhaul link. This paper presents the Simple Gateway Positioning (SGWP) solution, which optimizes the position of a Gateway (GW) UAV to ensure backhaul connectivity in a two-tier network. We integrate SUPPLY for FAP positioning with SGWP for GW placement and evaluate their combined performance under various scenarios involving different GUs' Quality of Service (QoS) requirements and positions. Our results demonstrate that SUPPLY and SGWP can be used jointly in a two-tier network with minimal performance degradation.
2024
Autores
Costa, A; Duarte, P; Coelho, A; Campos, R;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, WIMOB
Abstract
The 6G paradigm and the massive usage of interconnected wireless devices introduced the need for flexible wireless networks. A promising approach lies in employing Mobile Robotic Platforms (MRPs) to create communications cells on-demand. The challenge consists in positioning the MRPs to improve the wireless connectivity offered. This is exacerbated in millimeter wave (mmWave), Terahertz (THz), and visible light-based networks, which imply the establishment of short-range, Line of Sight (LoS) wireless links to take advantage of the ultra-high bandwidth channels available. This paper proposes a solution to enable the obstacle-aware, autonomous positioning of MRPs and provide LoS wireless connectivity to communications devices. It consists of 1) a Vision Module that uses video data gathered by the MRP to determine the location of obstacles, wireless devices and users, and 2) a Control Module, which autonomously positions the MRP based on the information provided by the Vision Module. The proposed solution was validated in simulation and through experimental testing, showing that it is able to position an MRP while ensuring LoS wireless links between a mobile communications cell and wireless devices or users.
2024
Autores
Moreira, G; Loureiro, JP; Teixeira, FB; Campos, R;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
Underwater wireless communications play a significant role in the Blue Economy, supporting the operations of sensing platforms like Autonomous Surface Vehicles (ASVs) and Autonomous Underwater Vehicles (AUVs). These platforms require reliable and fast communications to transmit the extensive data gathered without surfacing. Yet, the ocean poses challenges to signal propagation, restricting communications to high bitrate at short ranges via optical and RF, or low bitrate at long distances using acoustic communications. This paper introduces Aquacom, a multimodal manager for underwater communications that integrates acoustic, RF, and optical communnications, ensuring seamless handover between technologies and link aggregation to enhance network performance. Upon validation in freshwater tank lab tests, Aquacom demonstrated the capability for switching interfaces without data loss and effective link aggregation through the simultaneous use of multiple wireless interfaces.
2024
Autores
Cardoso, F; Matos, S; Pessoa, L; Clemente, A; Costa, J; Fernandes, C; Felicio, J;
Publicação
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP
Abstract
Reconfigurable Intelligent Surfaces (RIS) are an enabling technology widely investigated towards 6G. The viability of large active metasurfaces is constrained by the RF performance, cost, and power consumption. The number of switches per unit cell is a key design parameter that designers aim to minimize following cost and power consumption drivers. However, an efficient use of the aperture is ultimately required and although a one-to-one correspondence between number of switches and phase-quantization bits seems intuitive, one may question its impact. Here we present a full-wave evaluation of a 30x30 1-bit reflective RIS, implemented considering two pin diodes per unit cell. The RIS allows scanning up to 60 degrees from 28 to 29 GHz with a maximum aperture efficiency of 22%. This superior performance provides tantalizing evidence that the multiple switches per bit approach should not be discarded a priori due to its apparent higher complexity.
2024
Autores
Alexandropoulos, GC; Clemente, A; Matos, S; Husbands, R; Ahearne, S; Luo, Q; Lain Rubio, V; Kürner, T; Pessoa, LM;
Publicação
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP
Abstract
Wireless communications in the THz frequency band is an envisioned revolutionary technology for sixth Generation (6G) networks. However, such frequencies impose certain coverage and device design challenges that need to be efficiently overcome. To this end, the development of cost- and energy-efficient approaches for scaling these networks to realistic scenarios constitute a necessity. Among the recent research trends contributing to these objectives belongs the technology of Reconfigurable Intelligent Surfaces (RISs). In fact, several high-level descriptions of THz systems based on RISs have been populating the literature. Nevertheless, hardware implementations of those systems are still very scarce, and not at the scale intended for most envisioned THz scenarios. In this paper, we overview some of the most significant hardware design and signal processing challenges with THz RISs, and present a preliminary analysis of their impact on the overall link budget and system performance, conducted in the framework of the ongoing TERRAMETA project.
2024
Autores
Elsaid, M; Pessoa, LM;
Publicação
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP
Abstract
Reconfigurable Intelligent Surfaces (RISs) are in significant focus within 6G research. However, RISs face a power consumption challenge in the reconfigurable elements which may restrict its future scale-up to large areas. We address this issue by proposing a unit cell based on a non-volatile memristor-based switching mechanism. A 1-bit memristor-based reconfigurable RIS unit cell was designed in the Ka-band, and validated using CST and HFSS simulation platforms. The required control circuit to enable the digital control of the memristor has also been proposed. The proposed unit cell achieves losses of less than 1 dB over a frequency band of 25 - 28.3 GHz and a phase difference of 180 degrees +/- 20 degrees at a central frequency of 26.7 GHz, with an operational bandwidth of approximately 1 GHz. Furthermore, an exemplary 16x16 RIS was designed and simulated based on the proposed unit cell to demonstrate its capability to achieve beam steering.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.