2023
Autores
Campos, R; Ricardo, M; Pouttu, A; Correia, LM;
Publicação
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
Abstract
This Special Issue originates from the international conference 2021 Joint EuCNC & 6G Summit (Joint European Conference on Networks and Communications and 6G Summit), which was held in June 2021 in virtual format. The Technical Programme Chairs of the conference selected the best papers and invited authors to submit an extended version of their paper by at least one-third of their length. Only the top ranked papers were invited to this Special Issue, in order to fulfil its purpose. The main target was to collect and present quality research contributions in the most recent activities related to technologies, systems and networks beyond 5G. Through this Special Issue, the state-of-the-art is presented and the new challenges highlighted, regarding the latest advances on systems and network perspectives that are already being positioned beyond 5G, bridging as well with the evolution of 5G, including applications and trials. Therefore, the motivation for this Special Issue is to present the latest and finest results on the evolution of research of mobile and wireless communications, coming, but not exclusively (since Joint EuCNC & 6G Summit is a conference open to the whole research community), from projects co-financed by the European Commission within its R&D programmes.
2023
Autores
Shafafi, K; Almeida, EN; Coelho, A; Fontes, H; Ricardo, M; Campos, R;
Publicação
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings
Abstract
Unmanned Aerial Vehicles (UAVs) offer promising potential as communications node carriers, providing on-demand wireless connectivity to users. While existing literature presents various wireless channel models, it often overlooks the impact of UAV heading. This paper provides an experimental characterization of the Air-to-Ground (A2G) and Ground-to-Air (G2A) wireless channels in an open environment with no obstacles nor interference, considering the distance and the UAV heading. We analyze the received signal strength indicator and the TCP throughput between a ground user and a UAV, covering distances between 50 m and 500 m, and considering different UAV headings. Additionally, we characterize the antenna’s radiation pattern based on UAV headings. The paper provides valuable perspectives on the capabilities of UAVs in offering on-demand and dynamic wireless connectivity, as well as highlights the significance of considering UAV heading and antenna configurations in real-world scenarios.
2023
Autores
Almeida, EN; Fontes, H; Campos, R; Ricardo, M;
Publicação
PROCEEDINGS OF THE 2023 WORKSHOP ON NS-3, WNS3 2023
Abstract
Digital twins have been emerging as a hybrid approach that combines the benefits of simulators with the realism of experimental testbeds. The accurate and repeatable set-ups replicating the dynamic conditions of physical environments, enable digital twins of wireless networks to be used to evaluate the performance of next-generation networks. In this paper, we propose the Position-based Machine Learning Propagation Loss Model (P-MLPL), enabling the creation of fast and more precise digital twins of wireless networks in ns-3. Based on network traces collected in an experimental testbed, the P-MLPL model estimates the propagation loss suffered by packets exchanged between a transmitter and a receiver, considering the absolute node's positions and the traffic direction. The P-MLPL model is validated with a test suite. The results show that the P-MLPL model can predict the propagation loss with a median error of 2.5 dB, which corresponds to 0.5x the error of existing models in ns-3. Moreover, ns-3 simulations with the P-MLPL model estimated the throughput with an error up to 2.5 Mbit/s, when compared to the real values measured in the testbed.
2023
Autores
Escobar, JJL; Ricardo, M; Campos, R; Gil-Castineira, F; Redondo, RPD;
Publicação
INTERNET OF THINGS
Abstract
Management of network resources in advanced IoT applications is a challenging topic due to their distributed nature from the Edge to the Cloud, and the heavy demand of real-time data from many sources to take action in the deployment. FANETs (Flying Ad-hoc Networks) are a clear example of heterogeneous multi-modal use cases, which require strict quality in the network communications, as well as the coordination of the computing capabilities, in order to operate correctly the final service. In this paper, we present a Virtual Network Embedding (VNE) framework designed for the allocation of dataflow applications, composed of nano-services that produce or consume data, in a wireless infrastructure, such as an airborne network. To address the problem, an anypath-based heuristic algorithm that considers the quality demand of the communication between nano-services is proposed, coined as Quality-Revenue Paired Anypath Dataflow VNE (QRPAD-VNE). We also provide a simulation environment for the evaluation of its performance according to the virtual network (VN) request load in the system. Finally, we show the suitability of a multi-parameter framework in conjunction with anypath routing in order to have better performance results that guarantee minimum quality in the wireless communications.
2023
Autores
Shafafi, K; Coelho, A; Campos, R; Ricardo, M;
Publicação
2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly used as cost-effective and flexible Wi-Fi Access Points (APs) and cellular Base Stations (BSs) to enhance Quality of Service (QoS). In disaster management scenarios, UAV-based networks provide on-demand wireless connectivity when traditional infrastructures fail. In obstacle-rich environments like urban areas, reliable high-capacity communications links depend on Line-of-Sight (LoS) availability, especially at higher frequencies. Positioning UAVs to consider obstacles and enable LoS communications represents a promising solution that requires further exploration and development. The main contribution of this paper is the Traffic- and Obstacle-aware UAV Positioning Algorithm (TOPA). TOPA takes into account the users' traffic demand and the need for LoS between the UAV and the ground users in the presence of obstacles. The network performance achieved when using TOPA was evaluated through ns-3 simulations. The results show up to 100% improvement in the aggregate throughput without compromising fairness.
2023
Autores
Alves, MI; Araújo, AD; Lima, B;
Publicação
International Conference on Computer Supported Education, CSEDU - Proceedings
Abstract
Computer architecture is a prevalent topic of study in Informatics and Electrical Engineering courses, though students’ overall grasp of this subject’s concepts is many times hampered, mainly due to the lack of educational tools that can intuitively represent the internal behaviour of a CPU. With the evolution of the ARM architecture and its adoption in higher education institutions, the demand for this sort of tool has increased. Educational tools, specifically developed for the ARMv8 processor, are scarce and inadequate for what is necessary in an academic context. In order to contribute towards solving this problem, eduARM, a practical and interactive web platform that simulates how a ARMv8 CPU functions, was developed and is presented through this paper. Since this tool’s main purpose is to aid computer architecture students, contributing to an improvement in their learning experience, it comprises varied concepts of computer architecture and organization in a simple and intuitive manner, such as the internal structure of a CPU, in both its unicycle and pipelined versions, and the effects of executing a set of instructions. As to better understand its value, the developed tool was then validated through a case study with the participation of computer architecture students. Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.