Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2024

SchoolAIR: A Citizen Science IoT Framework Using Low-Cost Sensing for Indoor Air Quality Management

Autores
Barros, N; Sobral, P; Moreira, RS; Vargas, J; Fonseca, A; Abreu, I; Guerreiro, MS;

Publicação
SENSORS

Abstract
Indoor air quality (IAQ) problems in school environments are very common and have significant impacts on students' performance, development and health. Indoor air conditions depend on the adopted ventilation practices, which in Mediterranean countries are essentially based on natural ventilation controlled through manual window opening. Citizen science projects directed to school communities are effective strategies to promote awareness and knowledge acquirement on IAQ and adequate ventilation management. Our multidisciplinary research team has developed a framework-SchoolAIR-based on low-cost sensors and a scalable IoT system architecture to support the improvement of IAQ in schools. The SchoolAIR framework is based on do-it-yourself sensors that continuously monitor air temperature, relative humidity, concentrations of carbon dioxide and particulate matter in school environments. The framework was tested in the classrooms of University Fernando Pessoa, and its deployment and proof of concept took place in a high school in the north of Portugal. The results obtained reveal that CO2 concentrations frequently exceed reference values during classes, and that higher concentrations of particulate matter in the outdoor air affect IAQ. These results highlight the importance of real-time monitoring of IAQ and outdoor air pollution levels to support decision-making in ventilation management and assure adequate IAQ. The proposed approach encourages the transfer of scientific knowledge from universities to society in a dynamic and active process of social responsibility based on a citizen science approach, promoting scientific literacy of the younger generation and enhancing healthier, resilient and sustainable indoor environments.

2024

In-Home Sleep Monitoring using Edge Intelligence

Autores
Torres, JM; Oliveira, S; Sobral, PM; Moreira, RS; Soares, C;

Publicação
SN Comput. Sci.

Abstract
We spend about one-third of our life either sleeping or attempting to do so. Sleeping is a key aspect for most human body processes, affecting physical and mental health and the ability to fight diseases, develop immunity and control metabolism. Therefore, monitoring human sleep quality is extremely important for the detection of possible sleep disorders. Several technologies exist to achieve this goal, however, most of them are expensive proprietary systems, some require hospitalization and many use intrusive equipment that can, by itself, affect sleep quality. This paper presents an intelligent system, a complete low-cost hardware and software solution, for monitoring the sleep quality of an individual in a home environment. User privacy is guaranteed as all processing is done at the edge and no audio or video is stored. This system monitors several fundamental aspects of sleeping periods in real-time using a low cost single-board computer for processing, a camera for body motion detection (MD module) and for eye/sleep status detection (SSD module), and a microphone for audio recognition (AUDR module) of breath pattern analysis and snore detection. It can be strategically placed near the bed to avoid interfering with the natural sleep pattern. For each sleeping period, the system produces a final report that can be a valuable aid for improving the sleeping health of the monitored person. Functional unitary tests were carried successfully on the selected, low-cost, hardware platform (Raspberry Pi). The entire process was validated by an expert clinical psychologist, ensuring the reliability and effectiveness of the system. The visual and sound modules use sophisticated computer vision and machine learning techniques suitable for edge computing devices. Each of the system’s features have been independently tested, using properly organized audio and video datasets and the well established metrics of precision, recall and F1 score, to evaluate the binary classifiers in each of the three modules. The accuracy values obtained where 90.2% (MD), 79.1% (SSD) and 81.3% (AUDR), demonstrating the great application potential of our solution. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024.

2024

An Efficient Edge Computing-Enabled Network for Used Cooking Oil Collection

Autores
Gomes, B; Soares, C; Torres, JM; Karmali, K; Karmali, S; Moreira, RS; Sobral, P;

Publicação
SENSORS

Abstract
In Portugal, more than 98% of domestic cooking oil is disposed of improperly every day. This avoids recycling/reconverting into another energy. Is also may become a potential harmful contaminant of soil and water. Driven by the utility of recycled cooking oil, and leveraging the exponential growth of ubiquitous computing approaches, we propose an IoT smart solution for domestic used cooking oil (UCO) collection bins. We call this approach SWAN, which stands for Smart Waste Accumulation Network. It is deployed and evaluated in Portugal. It consists of a countrywide network of collection bin units, available in public areas. Two metrics are considered to evaluate the system's success: (i) user engagement, and (ii) used cooking oil collection efficiency. The presented system should (i) perform under scenarios of temporary communication network failures, and (ii) be scalable to accommodate an ever-growing number of installed collection units. Thus, we choose a disruptive approach from the traditional cloud computing paradigm. It relies on edge node infrastructure to process, store, and act upon the locally collected data. The communication appears as a delay-tolerant task, i.e., an edge computing solution. We conduct a comparative analysis revealing the benefits of the edge computing enabled collection bin vs. a cloud computing solution. The studied period considers four years of collected data. An exponential increase in the amount of used cooking oil collected is identified, with the developed solution being responsible for surpassing the national collection totals of previous years. During the same period, we also improved the collection process as we were able to more accurately estimate the optimal collection and system's maintenance intervals.

2024

Object and Event Detection Pipeline for Rink Hockey Games

Autores
Lopes, JM; Mota, LP; Mota, SM; Torres, JM; Moreira, RS; Soares, C; Pereira, I; Gouveia, FR; Sobral, P;

Publicação
FUTURE INTERNET

Abstract
All types of sports are potential application scenarios for automatic and real-time visual object and event detection. In rink hockey, the popular roller skate variant of team hockey, it is of great interest to automatically track player movements, positions, and sticks, and also to make other judgments, such as being able to locate the ball. In this work, we present a real-time pipeline consisting of an object detection model specifically designed for rink hockey games, followed by a knowledge-based event detection module. Even in the presence of occlusions and fast movements, our deep learning object detection model effectively identifies and tracks important visual elements in real time, such as: ball, players, sticks, referees, crowd, goalkeeper, and goal. Using a curated dataset consisting of a collection of rink hockey videos containing 2525 annotated frames, we trained and evaluated the algorithm's performance and compared it to state-of-the-art object detection techniques. Our object detection model, based on YOLOv7, presents a global accuracy of 80% and, according to our results, good performance in terms of accuracy and speed, making it a good choice for rink hockey applications. In our initial tests, the event detection module successfully detected an important event type in rink hockey games, namely, the occurrence of penalties.

2024

Object and Event Detection Pipeline for Rink Hockey Games

Autores
Lopes, JM; Mota, LP; Mota, SM; Torres, JM; Moreira, RS; Soares, C; Pereira, I; Gouveia, F; Sobral, P;

Publicação

Abstract
All types of sports are potential application scenarios for automatic and real-time visual object and event detection. In rink hockey, the popular roller quad skate variant of hockey team sports, it is of great interest to automatically track player’s movements and positions, player’s sticks and, also, making other judgments, such as being able to locate the ball. In this work, we introduce a real-time pipeline composed by an object detection model, created specifically for rink hockey games, followed by a knowledge-based event detection module. Even in the presence of occlusions and quick motions, our deep learning object detection model effectively identifies and tracks, in real-time, important visual elements such as: ball; players; sticks; referees; crowd; goalkeeper; and goal. Using a curated dataset composed by a collection of videos of rink hockey, comprising 2525 annotated frames, we trained and evaluated the algorithm performance and compare it to state of the art object detection techniques. Our object detection model, based on YOLOv7, presents a global accuracy of 80%, and presents a good performance in terms of accuracy and speed, according to our results, making it a good choice for rink hockey applications. In our initial tests, the event detection module successfully detected one important event type in rink hockey games, the occurrence of penalties.

2024

Automated identification of building features with deep learning for risk analysis

Autores
Gouveia, F; Silva, V; Lopes, J; Moreira, RS; Torres, JM; Guerreiro, MS;

Publicação
DISCOVER APPLIED SCIENCES

Abstract
Accurate and up-to-date information about the building stock is fundamental to better understand and mitigate the impact caused by catastrophic earthquakes, as seen recently in Turkey, Syria, Morocco and Afghanistan. Planning for such events is necessary to increase the resilience of the building stock and to minimize casualties and economic losses. Although in several parts of the world new constructions follow more strict compliance with modern seismic codes, a large proportion of existing building stock still demands a more detailed and automated vulnerability analysis. Hence, this paper proposes the use of computer vision deep learning models to automatically classify buildings and create large scale (city or region) exposure models. Such approach promotes the use of open databases covering most cities in the world (cf. OpenStreetMap, Google Street View, Bing Maps and satellite imagery), Therefore providing valuable geographical, topological and image data that may cheaply be used to extract valuable information to feed exposure models. Our previous work using deep learning models achieved, in line with the results from other projects, high classification accuracy concerning building materials and number of storeys. This paper extends the approach by: (i) implementing four CNN-based models to perform classification of three sets of different/extended buildings' characteristics; (ii) training and comparing the performance of the four models for each of the sets; (iii) comparing the risk assessment results based on data extracted from the best CNN-based model against the results obtained with traditional ground data. In brief, the best accuracy obtained with the three tested sets of buildings' characteristics is higher than 80%. Moreover, it is shown that the error resulting from using exposure models fed by automatic classification is not only acceptable, but also far outweighs the time and costs of obtaining a manual and specialised classification of building stocks. Finally, we recognize that automatic assessment of certain complex buildings' characteristics compares to similar limitations of traditional assessments performed by specialized civil engineers, typically related with the identification of the number of storeys and the construction material. However, the identified limitations do not show worse results when compared against the use of manual buildings' assessment. Implement an AI/ML framework for automating the collection of buildings' fa & ccedil;ades pictures annotated with several characteristics required by Exposure Models.Collect, process and filter a 4.239 pictures dataset of buildings' fa & ccedil;ades, which was made publicly available.Train, validate and test several Deep Learning models using 3 sets of building characteristics to produce exposure models with accuracies above 80%.Use heatmaps to show which image areas are more activated for a given prediction, thus helping to explain classification results.Compare simulation results using the predicted exposure model and a manually created exposure model, for the same set of buildings.

  • 21
  • 377