Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Luís Carlos Coelho

2016

Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils

Autores
Coelho, L; Viegas, D; Santos, JL; de Almeida, JMMM;

Publicação
TALANTA

Abstract
A hybrid optical sensing scheme based on a fiber Bragg grating (FBG) combined with a titanium dioxide coated long period fiber grating (LPFG) for monitoring organic solvents in high refractive index edible oils is reported. In order to investigate and optimize the sensor performance, two different FBG/LPFG interrogation systems were investigated. The readout of the sensor was implemented using either the wavelength shift of the LPFG resonance dip or the variation in the optical power level of the reflected/transmitted light at the FBG wavelength peak, which in turn depends on the wavelength position of the LPFG resonance. Hexane concentrations up to 20%V/V, corresponding to the refractive index range from 1.451 to 1.467, were considered. For the transmission mode of operation, sensitivities of 1.41 nm/%V/V and 0.11 dB/%V/V, with resolutions of 0.58%V/V and 0.29%V/V, were achieved when using the LPFG wavelength shift and the FBG transmitted optical power, respectively. For the FBG reflection mode of operation, a sensitivity of 0.07 dB/V/V and a resolution better than 0.16%V/V were estimated.

2015

Phase Interrogated Plasmonic Optical Fiber Optrode with Bimetallic Layers

Autores
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Viegas, D;

Publicação
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
Optical fiber optrodes are attractive sensing devices due to their ability to perform point measurement in remote locations. Mostly, they are oriented to biochemical sensing, quite often relying on fluorescent and spectroscopic techniques, but with the refractometric approach being also considered when the objective is high measurement performance, particularly when focusing on measurand resolution. In this work, we address this subject proposing and theoretically analyzing the characteristics of a fiber optic optrode relying on plasmonic interaction. The optrode structure is a fiber optic tapered tip layout incorporating a lateral bimetallic layer (silver + gold) and operating in reflection.

2014

Analysis of phase interrogation of SPR fiber optic sensors with characteristics tailored by the application of different metal-dielectric overlays

Autores
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Guerreiro, A; Viegas, D;

Publicação
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
Optical fiber sensors based on the phenomenon of plasmonic resonance can be interrogated applying different methods, the most common one being the spectral approach where the measurand information is derived from the reading of the wavelength resonance dip. In principle, a far better performance can be achieved considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This approach is investigated in this work for fiber optic SPR sensors with overlays which are combinations of metallic and dielectric thin films, permitting not only to tune the wavelength of the SPR resonance but also the sensitivity associated with the phase interrogation of the sensors.

2014

DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of care diagnostic

Autores
Coelho, L; Queiros, RB; Santos, JL; Martins, MCL; Viegas, D; Jorge, PAS;

Publicação
PLASMONICS IN BIOLOGY AND MEDICINE XI

Abstract
Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 mu m are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N-2 and then the aminated thrombin aptamer (5'-[NH2]-GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

2014

Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films

Autores
Coelho, L; Viegas, D; Santos, JL; de Almeida, JMMM;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
A new type of fibre-optic refractive index sensor based on a long period fibre grating (LPFG) coated with a titanium dioxide (TiO2) thin film was demonstrated. The wavelength shift of the attenuation bands of this LPFG sensor to changes in the refractive index of the external media from 1.30 to 1.64 RIU was investigated. In order to optimize the sensor the TiO2 thin film thickness deposited around the LPFGs was varied from 10 to 80 nm. It was found that the TiO2 thin film increases the wavelength sensitivity of the LPFG to changes in the surrounding refractive index for values lower and higher than the cladding refractive index. As opposed to the bare LPFG it was shown the possibility to monitor refractive indices lower and higher than cladding refractive index tailoring the TiO2 thickness. An average wavelength sensitivity of 5250 nm/RIU was achieved in the range 1.444 to 1.456 RIU for a TiO2 thickness of 50 nm. In the region between 1.46 and 1.48 RIU the average sensitivity of about 825 nm/RIU was measured for a 40 nm thick film.

2013

H-2 Sensing Based on a Pd-Coated Tapered-FBG Fabricated by DUV Femtosecond Laser Technique

Autores
Silva, S; Coelho, L; Almeida, JM; Frazao, O; Santos, JL; Malcata, FX; Becker, M; Rothhardt, M; Bartelt, H;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
An optical fiber probe sensor based on a tapered-fiber Bragg grating (FBG) coated with 150-nm-thick Pd film is proposed for hydrogen detection. The FBG was written in a 50-mu m-diameter tapered fiber by deep ultraviolet femtosecond laser technology. A second FBG was inscribed in the 125 mu m-fiber section for temperature compensation. The sensing head was able to detect H-2 concentration in the range 0%-1% (v/v) H-2 at room temperature; a maximum sensitivity of 81.8 pm/%(v/v) H-2 was attained with temperature compensation. The influence of the Pd coating over temperature sensitivity of standard and tapered-FBGs is also presented.

  • 2
  • 27