Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2025

Specification of paraconsistent transition systems, revisited

Autores
Cunha, J; Madeira, A; Barbosa, LS;

Publicação
SCIENCE OF COMPUTER PROGRAMMING

Abstract
The need for more flexible and robust models to reason about systems in the presence of conflicting information is becoming more and more relevant in different contexts. This has prompted the introduction of paraconsistent transition systems, where transitions are characterized by two pairs of weights: one representing the evidence that the transition effectively occurs and the other its absence. Such a pair of weights can express scenarios of vagueness and inconsistency. . This paper establishes a foundation for a compositional and structured specification approach of paraconsistent transition systems, framed as paraconsistent institution. . The proposed methodology follows the stepwise implementation process outlined by Sannella and Tarlecki.

2025

Approaches to Conflict-free Replicated Data Types

Autores
Almeida, PS;

Publicação
ACM COMPUTING SURVEYS

Abstract
Conflict-free Replicated Data Types (CRDTs) allow optimistic replication in a principled way. Different replicas can proceed independently, being available even under network partitions and always converging deterministically: Replicas that have received the same updates will have equivalent state, even if received in different orders. After a historical tour of the evolution from sequential data types to CRDTs, we present in detail the two main approaches to CRDTs, operation-based and state-based, including two important variations, the pure operation-based and the delta-state based. Intended for prospective CRDT researchers and designers, this article provides solid coverage of the essential concepts, clarifying some misconceptions that frequently occur, but also presents some novel insights gained from considerable experience in designing both specific CRDTs and approaches to CRDTs.

2025

Alloy Repair Hint Generation Based on Historical Data

Autores
Barros, A; Neto, H; Cunha, A; Macedo, N; Paiva, ACR;

Publicação
FORMAL METHODS, PT II, FM 2024

Abstract
Platforms to support novices learning to program are often accompanied by automated next-step hints that guide them towards correct solutions. Many of those approaches are data-driven, building on historical data to generate higher quality hints. Formal specifications are increasingly relevant in software engineering activities, but very little support exists to help novices while learning. Alloy is a formal specification language often used in courses on formal software development methods, and a platform-Alloy4Fun-has been proposed to support autonomous learning. While non-data-driven specification repair techniques have been proposed for Alloy that could be leveraged to generate next-step hints, no data-driven hint generation approach has been proposed so far. This paper presents the first data-driven hint generation technique for Alloy and its implementation as an extension to Alloy4Fun, being based on the data collected by that platform. This historical data is processed into graphs that capture past students' progress while solving specification challenges. Hint generation can be customized with policies that take into consideration diverse factors, such as the popularity of paths in those graphs successfully traversed by previous students. Our evaluation shows that the performance of this new technique is competitive with non-data-driven repair techniques. To assess the quality of the hints, and help select the most appropriate hint generation policy, we conducted a survey with experienced Alloy instructors.

2024

Exploring Frama-C Resources by Verifying Space Software

Autores
Busquim e Silva, RA; Arai, NN; Burgareli, LA; Parente de Oliveira, JM; Sousa Pinto, J;

Publicação
Computer Science Foundations and Applied Logic

Abstract

2024

Performance and explainability of feature selection-boosted tree-based classifiers for COVID-19 detection

Autores
Rufino, J; Ramírez, JM; Aguilar, J; Baquero, C; Champati, J; Frey, D; Lillo, RE; Fernández Anta, A;

Publicação
HELIYON

Abstract
In this paper, we evaluate the performance and analyze the explainability of machine learning models boosted by feature selection in predicting COVID-19-positive cases from self-reported information. In essence, this work describes a methodology to identify COVID-19 infections that considers the large amount of information collected by the University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS). More precisely, this methodology performs a feature selection stage based on the recursive feature elimination (RFE) method to reduce the number of input variables without compromising detection accuracy. A tree-based supervised machine learning model is then optimized with the selected features to detect COVID-19-active cases. In contrast to previous approaches that use a limited set of selected symptoms, the proposed approach builds the detection engine considering a broad range of features including self-reported symptoms, local community information, vaccination acceptance, and isolation measures, among others. To implement the methodology, three different supervised classifiers were used: random forests (RF), light gradient boosting (LGB), and extreme gradient boosting (XGB). Based on data collected from the UMD-CTIS, we evaluated the detection performance of the methodology for four countries (Brazil, Canada, Japan, and South Africa) and two periods (2020 and 2021). The proposed approach was assessed in terms of various quality metrics: F1-score, sensitivity, specificity, precision, receiver operating characteristic (ROC), and area under the ROC curve (AUC). This work also shows the normalized daily incidence curves obtained by the proposed approach for the four countries. Finally, we perform an explainability analysis using Shapley values and feature importance to determine the relevance of each feature and the corresponding contribution for each country and each country/year.

2024

Pondering the Ugly Underbelly, and Whether Images Are Real

Autores
Hill, RK; Baquero, C;

Publicação
Commun. ACM

Abstract
[No abstract available]

  • 1
  • 253