2024
Autores
Ukil, A; Majumdar, A; Jara, AJ; Gama, J;
Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024
Abstract
Deep neural networks (DNN) are used to analyze images, videos, signals and texts require a lot of memory and intensive computing power. For example, the very successful GPT4 model contains more than a few trillion parameters. Although such models are of great impact, but they have been used very little in real-world applications, including industrial Internet of Things, self-driving cars, algorithmic health monitoring for use in limited mobile or edge devices. The requirement to run large models on resource-constrained peripherals has led to significant research interest in compressing DNN models. Signal processing researchers have traditionally advocated data (image/video/audio) compression, and by the way, many of these techniques are used for DNN compression. For example, source coding is a basic technique that has been widely used to compress various DNN models. In this paper, we present our views on the use of signal processing methods for DNN model compression.
2024
Autores
Silva, PR; Vinagre, J; Gama, J;
Publicação
ECAI 2024 - 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024)
Abstract
Effective anomaly detection in telecommunication networks is essential for securing digital transactions and supporting the sustainability of our global information ecosystem. However, the volume of data in such high-speed distributed environments imposes strict latency and scalability requirements on anomaly detection systems. This study focuses on distributed heavy hitter detection in telephone networks - a critical component of network traffic analysis and fraud detection. We propose a federated version of the Lossy Counting algorithm and compare it to its centralized version. Our experimental results reveal that the federated approach can detect considerably more unique heavy hitters than the centralized method while enhancing privacy. Furthermore, Federated Lossy Counting does not need a large amount of centralized processing power since it can leverage the networked infrastructure with minimal impact on bandwidth and computing power. © 2024 The Authors.
2024
Autores
Zhang, C; Almpanidis, G; Fan, G; Deng, B; Zhang, Y; Liu, J; Kamel, A; Soda, P; Gama, J;
Publicação
CoRR
Abstract
Long-tailed data are a special type of multiclass imbalanced data with a very large amount of minority/tail classes that have a very significant combined influence. Long-tailed learning (LTL) aims to build high-performance models on datasets with long-tailed distributions that can identify all the classes with high accuracy, in particular the minority/tail classes. It is a cutting-edge research direction that has attracted a remarkable amount of research effort in the past few years. In this article, we present a comprehensive survey of the latest advances in long-tailed visual learning. We first propose a new taxonomy for LTL, which consists of eight different dimensions, including data balancing, neural architecture, feature enrichment, logits adjustment, loss function, bells and whistles, network optimization, and posthoc processing techniques. Based on our proposed taxonomy, we present a systematic review of LTL methods, discussing their commonalities and alignable differences. We also analyze the differences between imbalance learning and LTL. Finally, we discuss prospects and future directions in this field. © 2012 IEEE.
2024
Autores
Bécue, A; Gama, J; Brito, PQ;
Publicação
ARTIFICIAL INTELLIGENCE REVIEW
Abstract
The classic literature about innovation conveys innovation strategy the leading and starting role to generate business growth due to technology development and more effective managerial practices. The advent of Artificial Intelligence (AI) however reverts this paradigm in the context of Industry 5.0. The focus is moving from how innovation fosters AI to how AI fosters innovation. Therefore, our research question can be stated as follows: What factors influence the effect of AI on Innovation Capacity in the context of Industry 5.0? To address this question we conduct a scoping review of a vast body of literature spanning engineering, human sciences, and management science. We conduct a keyword-based literature search completed by bibliographic analysis, then classify the resulting 333 works into 3 classes and 15 clusters which we critically analyze. We extract 3 hypotheses setting associations between 4 factors: company age, AI maturity, manufacturing strategy, and innovation capacity. The review uncovers several debates and research gaps left unsolved by the existing literature. In particular, it raises the debate whether the Industry5.0 promise can be achieved while Artificial General Intelligence (AGI) remains out of reach. It explores diverging possible futures driven toward social manufacturing or mass customization. Finally, it discusses alternative AI policies and their incidence on open and internal innovation. We conclude that the effect of AI on innovation capacity can be synergic, deceptive, or substitutive depending on the alignment of the uncovered factors. Moreover, we identify a set of 12 indicators enabling us to measure these factors to predict AI's effect on innovation capacity. These findings provide researchers with a new understanding of the interplay between artificial intelligence and human intelligence. They provide practitioners with decision metrics for a successful transition to Industry 5.0.
2024
Autores
Caroprese, L; Pisani, F; Veloso, BM; Konig, M; Manco, G; Hoos, H; Gama, J;
Publicação
ACM Transactions on Recommender Systems
Abstract
2024
Autores
Gama, J;
Publicação
Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2024, Volume 1: KDIR, Porto, Portugal, November 17-19, 2024.
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.