Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2025

Effect of AI on Innovation Capacity in the context of Industry 5.0: Findings from a Qualitative study

Autores
Bécue, A; Gama, J; Brito, PQ;

Publicação
Strategic Business Research

Abstract

2025

A Systematic Literature Review on Multi-label Data Stream Classification

Autores
Oliveira, HF; de Faria, ER; Gama, J; Khan, L; Cerri, R;

Publicação
CoRR

Abstract

2025

Fish swarm parameter self-tuning for data streams

Autores
Veloso, B; Neto, HA; Buarque, F; Gama, J;

Publicação
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Hyper-parameter optimization in machine learning models is critical for achieving peak performance. Over the past few years, numerous researchers have worked on this optimization challenge. They primarily focused on batch learning tasks where data distributions remain relatively unchanged. However, addressing the properties of data streams poses a substantial challenge. With the rapid evolution of technology, the demand for sophisticated techniques to handle dynamic data streams is becoming increasingly urgent. This paper introduces a novel adaptation of the Fish School Search (FSS) Algorithm for online hyper-parameter optimization, the FSS-SPT. The FSS-SPT is a solution designed explicitly for the dynamic context of data streams. One fundamental property of the FSS-SPT is that it can change between exploration and exploitation modes to cope with the concept drift and converge to reasonable solutions. Our experiments on different datasets provide compelling evidence of the superior performance of our proposed methodology, the FSS-SPT. It outperformed existing algorithms in two machine learning tasks, demonstrating its potential for practical application.

2025

Fine-Tuning Transformer-Based LLMs in Hierarchical Text Classification

Autores
Santos, J; Silva, N; Ferreira, C; Gama, J;

Publicação
Discovery Science - 28th International Conference, DS 2025, Ljubljana, Slovenia, September 23-25, 2025, Proceedings

Abstract
Hierarchical document classification is essential for structuring large-scale textual corpora in domains such as digital libraries and academic repositories. While recent advances in large language models (LLMs) have opened new possibilities for text classification, their applicability to hierarchical settings under real-world constraints remains underexplored. This study investigates both generative and discriminative transformer-based models, evaluating their effectiveness across multiple inference strategies: zero-shot baseline, local fine-tuning, and a global approach using category-specific models. Experiments on two real-world hierarchical datasets provide a comprehensive comparison of classification accuracy, F1-macro scores, and inference times. The results highlight that, although generative LLMs can deliver competitive (yet variable) performance at higher levels of the hierarchy, their high inference costs hinder their use in time-sensitive applications. In contrast, fine-tuned discriminative models—particularly BERT-based architectures—consistently offer a more favorable trade-off between performance and efficiency. © 2025 Elsevier B.V., All rights reserved.

2025

RMIDDM: an unsupervised and interpretable concept drift detection method for data streams

Autores
Neto, R; Alencar, B; Gomes, HM; Bifet, A; Gama, J; Cassales, G; Rios, R;

Publicação
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Traditional machine learning techniques assume that data is drawn from a stationary source. This assumption is challenged in contexts with data streams for presenting constant and potentially infinite sequences whose distribution is prone to change over time. Based on these settings, detecting changes (a.k.a. concept drifts) is necessary to keep learning models up-to-date. Although state-of-the-art detection methods were designed to monitor the loss of predictive models, such monitoring falls short in many real-world scenarios where the true labels are not readily available. Therefore, there is increasing attention to unsupervised concept drift detection methods as approached in this paper. In this work, we present an unsupervised and interpretable method based on Radial Basis Function Networks (RBFN) and Markov Chains (MC), referred to as RMIDDM (Radial Markov Interpretable Drift Detection Method). In our method, RBF performs, in the intermediate layer, an activation process that implicitly produces groups of observations collected over time. Simultaneously, MC models the transitions between groups to support the detection of concept drifts, which happens when the active group changes and its probability exceeds a given threshold. A set of experiments with synthetic datasets and comparisons with state-of-the-art algorithms demonstrated that the proposed method can detect drifts at runtime in an efficient, interpretable, and independent way of labels, presenting competitive results and behavior. Additionally, to show its applicability in a real-world scenario, we analyzed new COVID-19 cases, deaths, and vaccinations to identify new waves as concept drifts and generate Markov models that allow understanding of their interaction.

2025

Interventions based on biofeedback systems to improve workers’ psychological well-being, mental health and safety: a systematic literature review (Preprint)

Autores
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;

Publicação

Abstract
BACKGROUND

In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being.

OBJECTIVE

To gain deeper insights into the suitability and effectiveness of employing biofeedback-based mental health interventions in real-world workplace settings, given that most research has predominantly been conducted within controlled laboratory conditions.

METHODS

A systematic review was conducted to identify studies that used biofeedback interventions in workplace settings. The review focused on traditional biofeedback, mindfulness, app-directed interventions, immersive scenarios, and in-depth physiological data presentation.

RESULTS

The review identified nine studies employing biofeedback interventions in the workplace. Breathing techniques showed great promise in decreasing stress and physiological parameters, especially when coupled with visual and/or auditory cues.

CONCLUSIONS

Future research should focus on developing and implementing interventions to improve well-being and mental health in the workplace, with the goal of creating safer and healthier work environments and contributing to the sustainability of organizations.

  • 16
  • 516